NDP-5_6_7.cpp
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
// NDP-5_6_7.cpp
// 
// NDP - Parallel SAT-Solver with OpenMPI for unlimited scalability
// 
// Copyright (c) 2025 GridSAT Stiftung
// 
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// 
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Affero General Public License for more details.
// 
// You should have received a copy of the GNU Affero General Public License
// along with this program.  If not, see <https://www.gnu.org/licenses/>.
// 
// GridSAT Stiftung - Georgstr. 11 - 30159 Hannover - Germany - info@gridsat.io
//
// https://gridsat.eth/limo - https://gridsat.eth.link - http://gridsat.io - ipns://gridsat.eth
//
//
//
// 
// +++ READ.me +++
//
// NDP - Parallel SAT-Solver with OpenMPI for unlimited scalability
//
// This NDP is an efficient parallel SAT-Solver. It parses DIMACS, factorizes, granulates input DIMACS
// into independent subproblems with BFS (Breadth-First Search), and performs parallel DFS (Depth-First Search).
// NDP 5.6.7 supports custom configuration through command-line options, leveraging OpenMPI for
// distributed multi-node computation ready for spot instances. The NDP outputs dynamically generated
// file names based on the input parameters and a truncated problem ID hash with the current UTC time.
// Version 5.6.7 runs in spot environments with -s and -r CLI options to save and resume from BFS results.
// 
// 
// REQUIREMENTS:
// 
// 	Input:			Generate DIMACS files at Paul Purdom and Amr Sabry's CNF Generator at:
// 					https://cgi.luddy.indiana.edu/~sabry/cnf.html
// 					For bit-wise input generation, use e.g.: https://bigprimes.org/RSA-challenge
// 	or
// 					generate DIMACS locally with: https://github.com/GridSAT/CNF_FACT-MULT
// 					or on IPFS ipfs://QmYuzG46RnjhVXQj7sxficdRX2tUbzcTkSjZAKENMF5jba
//
//					Input file extensions: any & none
//					E.g: .dimacs ⎪ .cnf ⎪ .txt ⎪ .doc ⎪ .xyz ⎪ [filname]
// 
//   GMP Library:	Ensure you have the GMP (GNU Multiple Precision Arithmetic Library) installed to handle
// 					arbitrary-precision arithmetic.
//					Install with:
//
//					sudo apt install libgmp-dev libgmpxx4ldbl
//
//   OpenMPI:		Required for distributed computation across nodes.
//					Install with:
//
//					sudo apt install openmpi-bin libopenmpi-dev
//
//   json3:			Required for saving BFS.
//					Install with:
//
//					sudo apt install nlohmann-json3-dev
// 
//
// INSTALLATION:
//
//		1. SSH Setup (Password-less Access)
//
// 		Generate an SSH key on the head node
//		ssh-keygen -t rsa -b 4096
//
//		note: use suggested default location and do not enter password (hit 3x enter) 
//
//
//		Copy the public key to each node (all nodes must have the respective SSH keys of each other)
//		ssh-copy-id -p <port_number> user@hostname
//
//		Test SSH access (use configured ports)
//		ssh -p <port_number> user@hostname
//
//
//		Configure SSH for ease of access. Edit `~/.ssh/config` on each node:
//
//		# Default settings for all hosts
//		Host *
//		    ForwardAgent no
//		    ForwardX11 no
//		    ServerAliveInterval 60
//		    ServerAliveCountMax 3
//		    StrictHostKeyChecking no
//		    UserKnownHostsFile /dev/null
//		    LogLevel ERROR
//		    ControlMaster auto
//		    ControlPath ~/.ssh/sockets/%r@%h:%p
//		    ControlPersist 10m
//		
//		# Custom settings for specific hosts
//		Host node1
//			HostName <IP_ADDRESS_1>
//			Port <PORT_1>
//			User user_name
//
//		Host node2
//			HostName <IP_ADDRESS_2>
//			Port <PORT_2>
//			User user_name
//
//		Host nodeX
//			HostName <IP_ADDRESS_X>
//			Port <PORT_X>
//			User user_name
//
//		You can now SSH directly to `node1`, `node2`, `nodeX` without specifying ports or usernames.
//
//
//		2. MPI Hostfile (Define Hosts and Slots)
//
//		Create a hostfile to specify MPI slots per node (subtract at least 1 core for system on each node).
//		Save as `your_hostfile.txt`:
//
//		node1 slots=<number logic cores - system reserve> or any number >0
// 		node2 slots=<number logic cores - system reserve> or any number >0
//
//
//		3. Install Required Libraries
//
//		Update system packages and install the required libraries:
//
//		sudo apt update
//		sudo apt install build-essential
//		sudo apt install libgmp-dev libgmpxx4ldbl
//		sudo apt install openmpi-bin libopenmpi-dev
//		sudo apt install nlohmann-json3-dev
//
//		check with:
//
//		g++ --version
//		mpirun --version
//		which mpirun
//
//
//		4. Environment Setup
//
//		Ensure the environment variables for MPI are set up correctly:
//
//		export PATH=/usr/local/openmpi/bin:$PATH
//		export LD_LIBRARY_PATH=/usr/local/openmpi/lib:$LD_LIBRARY_PATH
//		unset DISPLAY
//		source ~/.bashrc
//		mkdir -p ~/.ssh/sockets
//
//		check with:
//
//		echo $LD_LIBRARY_PATH
//
//
//		5. Permissions
//
//		Set permissions for SSH and the MPI hostfile:
//
//		chmod 600 ~/.ssh/config
//		chmod 644 /path/to/mpi_hostfile
//
//
// COMPILATION:
// 
// 	To compile the program on Linux (tested on Ubuntu 24.04.1 LTS), use the following command (compile on every node):
// 
// 	mpic++ -std=c++17 -Ofast -march=native -mtune=native -fomit-frame-pointer -funroll-loops -fprefetch-loop-arrays -flto=auto -ffast-math -static-libgcc -static-libstdc++ -o NDP-5_6_7 NDP-5_6_7.cpp -lgmpxx -lgmp -pthread
// 
// 
// 	CLI USAGE:
// 
// 	Once compiled, the program can be run from the command line using the following format:
// 
//	mpirun --use-hwthread-cpus --map-by slot --hostfile <hostfile_path> --mca plm_rsh_args "-q -F <ssh_config_path>" ./NDP-5_6_7 <dimacs_file> [-d depth | -q max_queues] [-s spot_instance_ready]
//
// 	mpirun:						Initializes MPI execution across multiple nodes.
// 	--use-hwthread-cpus:		Uses hardware threads for each logical CPU core, maximizing CPU utilization per node.
// 	--hostfile <hostfile_path>:	Specifies the file containing the list of nodes and the number of slots (CPUs) each node can contribute.
//	
// 	Command-Line Options:
// 
//     <dimacs_file>: The path to the input DIMACS file.
//     -d depth: Set a custom depth for BFS iterations. (Optional)
//     -q max_queues: Limit the maximum number of BFS queues. (Optional)
//	   -s spot_instance_ready: save BFS on headnode for later use via cli -r [filename.json] (Optional)
//	   -r resume_from_bfs: resume BFS on headnode via cli -r [filename.json] or -r and wait for prompt to chose from list (Optional)
// 
// 	Basic execution with nodes: mpirun --use-hwthread-cpus --map-by slot --hostfile your_hostfile.txt --mca plm_rsh_args "-q -F ./NDP-5_6_7 /home/your_username/.ssh/config" inputs/RSA/rsaFACT-128bit.dimacs
//           on single machine: mpirun --use-hwthread-cpus --map-by slot -np $(nproc) ./NDP-5_6_7 inputs/RSA/rsaFACT-64bit.dimacs
//
// 	This will run the program using the default settings for BFS and DFS and output the results to the current working directory
// 	with the node setup as specified in `~/.ssh/config` and `your_hostfile.txt` - the node running the command will be head-node, any other connected node will be a worker.
//		
//	Defaults:	BFS depth (max_iterations) = num_clauses - num_vars + ((world_size /2) * num_bits)
//				output_directory = input_directory
//				spot-ready: add or remove CPUs/Instances/Clusters on-the-fly
//	 
// 	Setting a custom depth:					-d 5000
// 
// 	Setting a custom Queue Size:			-q 256
// 	
// 	NOTE: results are saved into working directory ONLY !!!
//
// 
// MONITORING:
//
//		Monitor system and CPU usage on each node in real time:
//
//		mpstat -P ALL 1
//
//
// OUTPUT:
// 
//     The output file will be saved on the node which found the solution in the format:
//     NDP-5_6_7-<input_file_name>_<truncated_problem_id>_<cli-options>.txt
//     
//     Example: NDP-5_6_7_rsaFACT-128bit_8dfcb_auto.txt (no CLI option for Depth/Queue Size)
//	   On node: node7 
//
//	   With CLI -s BFS is saved on headnode as JSON: bfs_NDP-5_6_7_<input_file_name>_<truncated_problem_id>-<cli-options>.json
//
// 
// 	NOTE:
// 			only accepts input generated by Paul Purdom and Amr Sabry's CNF Generator - for code comments and any assistance
// 			paste code into ChatGPT and/or contact GridSAT Stiftung at gridsat.io
//
//
#include <iostream>
#include <vector>
#include <queue>
#include <chrono>
#include <thread>
#include <unordered_set>
#include <set>
#include <fcntl.h>
#include <atomic>
#include <unordered_map>
#include <string>
#include <regex>
#include <stdexcept>
#include <filesystem>
#include <fstream>
#include <mutex>
#ifdef _WIN32
    #include <windows.h>
    #include <direct.h>
#else
    #include <unistd.h>
    #include <sys/sysinfo.h>
#endif
// Third-party library includes
#include <gmpxx.h>
#include <mpi.h>
#include <nlohmann/json.hpp>
#include "ClauseSetPool.hpp" // make sure to have this file in the working directory

#ifdef ENABLE_PROFILING
#define PROFILE_SCOPE(name) ScopedTimer timer##__LINE__(name)
#else
#define PROFILE_SCOPE(name)
#endif

#ifdef __GNUC__
  #define FORCE_INLINE inline __attribute__((always_inline))
#else
  #define FORCE_INLINE inline
#endif

// ==========================
// PROFILING INFRASTRUCTURE
// ==========================

std::mutex profiler_mutex;
std::unordered_map<std::string, std::pair<double, int>> profiler_data;

using big_int = mpz_class;

class ScopedTimer {
public:
    ScopedTimer(const std::string &name)
        : name_(name), start_(std::chrono::high_resolution_clock::now()) { }
    ~ScopedTimer() {
        auto end = std::chrono::high_resolution_clock::now();
        double elapsed = std::chrono::duration<double>(end - start_).count();
        std::lock_guard<std::mutex> lock(profiler_mutex);
        auto &entry = profiler_data[name_];
        entry.first += elapsed;
        entry.second += 1;
    }
private:
    std::string name_;
    std::chrono::high_resolution_clock::time_point start_;
};

// ==========================
// END PROFILING INFRASTRUCTURE
// ==========================

using json = nlohmann::json;
using Matrix = std::vector<std::vector<int>>;

int dev_null = open("/dev/null", O_WRONLY);
auto _ = dup2(dev_null, STDERR_FILENO);

#define TAG_SOLUTION_FOUND 1
#define TAG_REGISTER_WORKER 2
#define TAG_QUEUE_SIZE 3
#define TAG_TASK_DONE 4

std::string version = "\n NDP-version: 5.6.7";

void dumpProfilingResults() {
    std::lock_guard<std::mutex> lock(profiler_mutex);
    std::cout << "\n\n=== Profiling Results ===\n";
    for (const auto &entry : profiler_data) {
        const std::string &func = entry.first;
        double total_time = entry.second.first;
        int calls = entry.second.second;
        std::cout << "Function [" << func << "]: Total time = " << total_time 
                  << " s, Calls = " << calls 
                  << ", Avg = " << (calls ? total_time/calls : 0) << " s\n";
    }
    std::cout << "=========================\n";
}

std::string getWorkingDirectory() {
    PROFILE_SCOPE("getWorkingDirectory");

    char temp[PATH_MAX];
#ifdef _WIN32
    if (_getcwd(temp, sizeof(temp)) != nullptr) {
#else
    if (getcwd(temp, sizeof(temp)) != nullptr) {
#endif
        return std::string(temp);
    } else {
        return std::string("");
    }
}

int get_processor_count() {
    PROFILE_SCOPE("get_processor_count");

#ifdef _WIN32
    SYSTEM_INFO sysinfo;
    ::GetSystemInfo(&sysinfo);
    return sysinfo.dwNumberOfProcessors;
#else
    return sysconf(_SC_NPROCESSORS_ONLN);
#endif
}

int hashTask(const std::pair<ClauseSet, std::vector<int>>& task) {
    int hash = 0;
    
    // Hash ClauseSet
    for (const auto& clause : task.first) {
        for (int lit : clause.l) {
            hash ^= lit + 0x9e3779b9 + (hash << 6) + (hash >> 2);
        }
    }

    // Hash vector of choices
    for (int val : task.second) {
        hash ^= val + 0x9e3779b9 + (hash << 6) + (hash >> 2);
    }

    return hash;
}

std::mutex state_mutex;
std::atomic<bool> solution_found{false};
const std::string bfs_filename = "bfs_results.json";
bool spot_instance_ready = false; // Flag to enable spot-instance readiness

std::string promptForJSONFile(int world_rank) {
    PROFILE_SCOPE("promptForJSONFile");
    if (world_rank != 0) {
        return "";
    }

    std::vector<std::string> bfsFiles;
    for (const auto& entry : std::filesystem::directory_iterator(".")) {
        if (entry.is_regular_file() && entry.path().string().find("bfs_") != std::string::npos) {
            bfsFiles.push_back(entry.path().filename().string());
        }
    }

    if (bfsFiles.empty()) {
        throw std::runtime_error("\n\n Error: No BFS results files found in the current directory.\n");
    }

    std::cout << "\n\n Available BFS results files:\n";
    std::cout << " ============================\n\n";
    for (size_t i = 0; i < bfsFiles.size(); ++i) {
        std::cout << " " << i + 1 << ": " << bfsFiles[i] << "\n";  // Added blank space before each index
    }

    int choice = 0;
    while (true) {
        std::cout << "\n Enter the number of the file to resume from: ";
        if (!(std::cin >> choice) || choice < 1 || choice > static_cast<int>(bfsFiles.size())) {
            std::cin.clear();
            std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
            std::cout << "\n Invalid input. Please enter a number between 1 and " << bfsFiles.size() << ".\n";
        } else {
            break;
        }
    }

    std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');

    std::string selectedFile = bfsFiles[choice - 1];
    std::cout << "\n Selected BFS file: " << selectedFile << "\n";
    return selectedFile;
}

std::string formatDuration(double seconds) {
    PROFILE_SCOPE("formatDuration");
    int months = static_cast<int>(seconds / (60 * 60 * 24 * 30));
    seconds -= months * 60 * 60 * 24 * 30;
    int days = static_cast<int>(seconds / (60 * 60 * 24));
    seconds -= days * 60 * 60 * 24;
    int hours = static_cast<int>(seconds / (60 * 60));
    seconds -= hours * 60 * 60;
    int minutes = static_cast<int>(seconds / 60);
    seconds -= minutes * 60;

    std::stringstream ss;
    if (months > 0) ss << months << " months ";
    if (days > 0) ss << days << " days ";
    if (hours > 0) ss << hours << " hours ";
    if (minutes > 0) ss << minutes << " minutes ";
    ss << std::fixed << std::setprecision(2);
    ss << seconds << " seconds\n";
    return ss.str();
}

std::string getCurrentUTCTime() {
	PROFILE_SCOPE("getCurrentUTCTime");
    auto now = std::chrono::system_clock::now();
    std::time_t now_c = std::chrono::system_clock::to_time_t(now);
    std::tm utc_tm = *std::gmtime(&now_c);

    std::stringstream ss;
    ss << std::put_time(&utc_tm, "%Y-%m-%d %H:%M:%S UTC");
    return ss.str();
}

std::string createProblemID(const std::string& input_number, int num_bits, int world_size, const std::string& utcTime) {
    PROFILE_SCOPE("createProblemID");
    std::stringstream ss;
    ss << input_number << "-" << num_bits << "-" << world_size << "-" << utcTime;

    std::string data = ss.str();
    std::size_t hash_value = std::hash<std::string>{}(data);

    std::stringstream hash_ss;
    hash_ss << std::hex << hash_value;
    return hash_ss.str().substr(0, 16);
}

std::string formatFilename(const std::string& script_name, const std::string& filename, const std::string& problemID, const std::string& cli_flag) {
    PROFILE_SCOPE("formatFilename");
    std::string sanitizedFilename = filename;
    size_t pos = sanitizedFilename.find_last_of('.');
    if (pos != std::string::npos) {
        sanitizedFilename = sanitizedFilename.substr(0, pos);
    }

    std::regex numberRegex(R"((\d{5})(\d+))");
    sanitizedFilename = std::regex_replace(sanitizedFilename, numberRegex, "$1e$2");

    std::string shortProblemID = problemID.substr(0, 5);

    std::stringstream ss;
    ss << script_name << "_" << sanitizedFilename << "_" << shortProblemID << "-" << cli_flag << ".txt";

    return ss.str();
}

json serializeBFSResults(const std::queue<std::pair<ClauseSet, std::vector<int>>>& queue, double bfs_duration = 0) {
    PROFILE_SCOPE("serializeBFSResults");
    json j;
    std::queue<std::pair<ClauseSet, std::vector<int>>> temp_queue = queue;

    while (!temp_queue.empty()) {
        auto [clauseSet, choices] = temp_queue.front();
        temp_queue.pop();
        json entry;
        
        // Serialize ClauseSet (vector of Clause3)
        json serialized_clauses;
        for (const Clause3 &cl : clauseSet) {
            serialized_clauses.push_back({cl.l[0], cl.l[1], cl.l[2]});
        }

        entry["clauses"] = serialized_clauses;
        entry["choices"] = choices;
        j["bfs_results"].push_back(entry);
    }

    j["bfs_time"] = bfs_duration;
    return j;
}

std::pair<std::queue<std::pair<ClauseSet, std::vector<int>>>, double> deserializeBFSResults(const json& j) {
    PROFILE_SCOPE("deserializeBFSResults");
    std::queue<std::pair<ClauseSet, std::vector<int>>> queue;

    for (const auto& entry : j["bfs_results"]) {
        ClauseSet clauseSet;
        
        // Deserialize ClauseSet (vector of Clause3)
        for (const auto& cl : entry["clauses"]) {
            Clause3 clause = {cl[0], cl[1], cl[2]};
            clauseSet.push_back(clause);
        }

        std::vector<int> choices = entry["choices"].get<std::vector<int>>();
        queue.emplace(clauseSet, choices);
    }

    double bfs_duration = j.value("bfs_time", 0.0);
    return {queue, bfs_duration};
}

std::string createBFSFilename(const std::string& script_name,
                              const std::string& filename,
                              const std::string& problemID,
                              const std::string& flag) {
    PROFILE_SCOPE("createBFSFilename");
    std::string baseFilename = std::filesystem::path(filename).filename().string();

    size_t pos = baseFilename.find_last_of('.');
    if (pos != std::string::npos) {
        baseFilename = baseFilename.substr(0, pos);
    }

    auto sanitize = [](std::string input) {
        for (char& c : input) {
            if (!isalnum(c) && c != '_' && c != '-') {
                c = '_';
            }
        }
        return input;
    };

    baseFilename = sanitize(baseFilename);
    std::string shortProblemID = sanitize(problemID.substr(0, 5));
    std::string sanitizedFlag = sanitize(flag);

    std::stringstream ss;
    ss << "bfs_" << script_name << "_" << baseFilename << "_" << shortProblemID << "-" << sanitizedFlag << ".json";

    return ss.str();
}

void saveBFSResults(const std::queue<std::pair<ClauseSet, std::vector<int>>>& queue,
                    const std::string& script_name,
                    const std::string& filename,
                    const std::string& problemID,
                    const std::string& flag,
                    const std::string& output_directory,
                    double bfs_duration = 0) {
    PROFILE_SCOPE("saveBFSResults");
    try {
        std::lock_guard<std::mutex> lock(state_mutex);

        json j = serializeBFSResults(queue, bfs_duration);
		
        std::string bfsFilename = createBFSFilename(script_name, filename, problemID, flag);

        if (!std::filesystem::exists(output_directory)) {
            throw std::runtime_error("\n  Output directory does not exist: " + output_directory);
        }
        if (!std::filesystem::is_directory(output_directory)) {
            throw std::runtime_error("\n  Output path is not a directory: " + output_directory);
        }

        std::ofstream outFile(output_directory + "/" + bfsFilename);
        if (!outFile.is_open()) {
            throw std::runtime_error("\n  Could not open file for writing: " + bfsFilename);
        }
        outFile << j.dump(4);
        outFile.close();

        std::cout << "\n\n  BFS results saved to " << bfsFilename << "\n";
    } catch (const std::exception& e) {
        std::cerr << "\n  Error in saving BFS results: " << e.what() << std::endl;
        MPI_Abort(MPI_COMM_WORLD, 1);
    }
}

std::pair<std::queue<std::pair<ClauseSet, std::vector<int>>>, double> readBFSResults(const std::string& filename) {
    PROFILE_SCOPE("readBFSResults");
    std::ifstream inFile(filename);
    if (!inFile.is_open()) {
        throw std::runtime_error("\n    Error: Could not open " + filename + " for reading.\n");
    }

    json j;
    inFile >> j;
    inFile.close();

    return deserializeBFSResults(j);
}

// === Fixed-Size Clause Representation ===

using ClauseSet = std::vector<Clause3>;

// Parse DIMACS string: convert 1-literal clauses to {0,0,x} and 3-literal clauses to {x,y,z}.
ClauseSet parseDimacsString(const std::string &data) {
    PROFILE_SCOPE("parseDimacsString");
    std::istringstream file(data);
    ClauseSet result;
    std::string line;
    while (std::getline(file, line)) {
        if (line.empty() || line[0] == 'c' || line[0] == 'p')
            continue;
        std::istringstream iss(line);
        std::vector<int> lits;
        int literal;
        while (iss >> literal && literal != 0)
            lits.push_back(literal);
        if (lits.size() == 1) {
            Clause3 cl = {0, 0, lits[0]};
            result.push_back(cl);
        } else if (lits.size() == 3) {
            Clause3 cl = {lits[0], lits[1], lits[2]};
            result.push_back(cl);
        }
        // Ignore clauses of unexpected size.
    }
    return result;
}

struct ClauseSetBranch {
    ClauseSet cs;
    bool conflict;
};

struct DFSState {
    ClauseSet* state;
    std::vector<int> choices;
    bool conflict;
};
inline std::pair<ClauseSetBranch, ClauseSetBranch> ResolutionStepWithConflict(const ClauseSet &A, int i) __attribute__((always_inline));
inline std::pair<ClauseSetBranch, ClauseSetBranch> ResolutionStepWithConflict(const ClauseSet &A, int i) {
    // Prepare output branch containers.
    ClauseSetBranch branchLA, branchRA;
    branchLA.conflict = false;
    branchRA.conflict = false;
    branchLA.cs.reserve(A.size());
    branchRA.cs.reserve(A.size());
    
    // Process each clause once.
    for (const Clause3 &cl : A) {
        bool skipLA = false;
        bool skipRA = false;
        Clause3 newLA, newRA;
        for (int j = 0; j < 3; ++j) {
            int lit = cl.l[j];
            
            if (lit == i) {
                newRA.l[j] = 0;
                skipLA = true;
            } else if (lit == -i) {
                newLA.l[j] = 0;
                skipRA = true;
            } else {
                newRA.l[j] = lit;
                newLA.l[j] = lit;
            }
        }
        // For LA branch: if not satisfied, check for conflict and add clause.
        if (!skipLA) {
            // If every literal is zero, then the clause is contradictory.
            if (newLA.l[0] == 0 && newLA.l[1] == 0 && newLA.l[2] == 0)
                branchLA.conflict = true;
            branchLA.cs.push_back(newLA);
        }
        // Repeat for RA branch.
        if (!skipRA) {
            if (newRA.l[0] == 0 && newRA.l[1] == 0 && newRA.l[2] == 0)
                branchRA.conflict = true;
            branchRA.cs.push_back(newRA);
        }
    }
    return { std::move(branchLA), std::move(branchRA) };
}

// ResolutionStep: given a ClauseSet and integer i, produce two ClauseSets.
inline std::pair<ClauseSet, ClauseSet> ResolutionStep(const ClauseSet &A, int i) __attribute__((always_inline));
inline std::pair<ClauseSet, ClauseSet> ResolutionStep(const ClauseSet &A, int i) {
    PROFILE_SCOPE("ResolutionStep_Fused");  // Entire function profiling

    // Prepare output clause sets. Reserve memory to avoid repeated allocations.
    ClauseSet LA, RA;
    LA.reserve(A.size());
    RA.reserve(A.size());

    // Outer loop: iterate each clause in A
    {
        PROFILE_SCOPE("ResolutionStep_Fused_ClauseLoop");  // Profile the clause loop as a whole
        for (const Clause3 &cl : A) {
            bool skipLA = false;
            bool skipRA = false;
            Clause3 newLA, newRA;
            // Process each of the three literals directly.
            for (int j = 0; j < 3; ++j) {
                int lit = cl.l[j];
                // LA branch (setting variable i = true):
                // - If the literal is i, then the clause is satisfied so we skip it.
                // - If the literal is -i, then it becomes false (i.e. 0).
                // - Otherwise, leave the literal unchanged.
                if (lit == i)
                    skipLA = true;
                else if (lit == -i)
                    newLA.l[j] = 0;
                else
                    newLA.l[j] = lit;

                // RA branch (setting variable i = false):
                // - If the literal is -i, then the clause is satisfied so we skip it.
                // - If the literal is i, then it becomes false (i.e. 0).
                // - Otherwise, leave the literal unchanged.
                if (lit == -i)
                    skipRA = true;
                else if (lit == i)
                    newRA.l[j] = 0;
                else
                    newRA.l[j] = lit;
            }
            // Only add the new clause to the corresponding branch if it wasn't skipped.
            if (!skipLA)
                LA.push_back(newLA);
            if (!skipRA)
                RA.push_back(newRA);
        }
    }
    // Return the result using move semantics.
    return { std::move(LA), std::move(RA) };
}

// choice: choose a literal from ClauseSet.
inline int choice(const ClauseSet &A) __attribute__((always_inline));
inline int choice(const ClauseSet &A) {
    PROFILE_SCOPE("choice");
    for (const auto &cl : A) {
        int zeroCount = 0, nonzero = 0;
        for (int j = 0; j < 3; ++j) {
            if (cl.l[j] == 0)
                ++zeroCount;
            else
                nonzero = cl.l[j];
        }
        if (zeroCount == 2)
            return std::abs(nonzero);
    }
    for (const auto &cl : A) {
        int zeroCount = 0, nonzero = 0;
        for (int j = 0; j < 3; ++j) {
            if (cl.l[j] == 0)
                ++zeroCount;
            else
                nonzero = cl.l[j];
        }
        if (zeroCount == 1)
            return std::abs(nonzero);
    }
    if (!A.empty())
        return std::abs(A[0].l[0]);
    return 0;
}

// Satisfy_iterative: DFS search on ClauseSet.
std::vector<std::vector<int>> Satisfy_iterative(ClauseSet A, bool firstAssignment = false) {
    PROFILE_SCOPE("Satisfy_iterative_with_pool");
    ClauseSetPool csPool;  // Use pool as before.
    
    // Instead of (ClauseSet*, vector<int>) pairs, we now use DFSState.
    std::vector<DFSState> stack;
    
    // Obtain initial state from pool. Since the input DIMACS should be conflict–free,
    // we mark it as not conflicted.
    ClauseSet* initialState = csPool.obtain(A.size());
    *initialState = std::move(A);
    stack.push_back({initialState, {}, false});
    
    std::vector<std::vector<int>> results;
    std::set<std::vector<int>> unique_results;
    bool found_first_assignment = false;
    
    while (!stack.empty()) {
        PROFILE_SCOPE("Satisfy_iterative_loop_with_pool");
        
        // Pop a DFS state.
        DFSState current = std::move(stack.back());
        stack.pop_back();
        
        // Instead of scanning with containsZeroSubarray, check our conflict flag.
        if (current.conflict) {
            csPool.release(current.state);
            continue;
        }
        ClauseSet* current_A = current.state;
        std::vector<int> choices = std::move(current.choices);
        
        int i = choice(*current_A);
        if (i == 0) {  // Terminal state: no unassigned variables.
            if (unique_results.insert(choices).second) {
                results.push_back(choices);
                if (firstAssignment) {
                    csPool.release(current_A);
                    break;
                }
            }
            csPool.release(current_A);
            continue;
        }
        
        // Instead of calling ResolutionStep then scanning for conflicts,
        // use ResolutionStepWithConflict to get both the new clause sets and their conflict flags.
        auto branches = ResolutionStepWithConflict(*current_A, i);
        csPool.release(current_A);  // Release current state as before.
        
        // Process LA branch.
        {
            // branchLA conflict flag is set by our new function.
            if (!branches.first.cs.empty() && !branches.first.conflict) {
                ClauseSet* newLA = csPool.obtain(branches.first.cs.size());
                *newLA = std::move(branches.first.cs);
                std::vector<int> new_choices = choices;
                new_choices.push_back(i);
                stack.push_back({newLA, new_choices, branches.first.conflict});
            } else if (branches.first.cs.empty()) {
                std::vector<int> new_choices = choices;
                new_choices.push_back(i);
                if (unique_results.insert(new_choices).second) {
                    results.push_back(new_choices);
                    if (firstAssignment) {
                        break;  // Found a solution, exit loop.
                    }
                }
            }
        }
        
        // Process RA branch.
        {
            if (!branches.second.cs.empty() && !branches.second.conflict) {
                ClauseSet* newRA = csPool.obtain(branches.second.cs.size());
                *newRA = std::move(branches.second.cs);
                std::vector<int> new_choices = choices;
                new_choices.push_back(-i);
                stack.push_back({newRA, new_choices, branches.second.conflict});
            } else if (branches.second.cs.empty()) {
                std::vector<int> new_choices = choices;
                new_choices.push_back(-i);
                if (unique_results.insert(new_choices).second) {
                    results.push_back(new_choices);
                    if (firstAssignment) {
                        break;
                    }
                }
            }
        }
        if (found_first_assignment)
            break;
    }
    return results;
}

// Satisfy_iterative_BFS: BFS search on ClauseSet.
std::pair<std::queue<std::pair<ClauseSet, std::vector<int>>>, int> 
Satisfy_iterative_BFS(ClauseSet A, int max_iterations, bool override_max_iterations, int &iterations, int max_queues, int world_rank, size_t &initial_queue_size) {
    PROFILE_SCOPE("Satisfy_iterative_BFS");
    std::queue<std::pair<ClauseSet, std::vector<int>>> queue;
    queue.push({A, {}});

    iterations = 0;
    int task_count = 1;
    
    int previous_task_count = task_count;
    int previous_iterations = iterations;

    while (!queue.empty()) {
        if (max_queues > 0 && queue.size() >= static_cast<size_t>(max_queues))
            break;
        if (max_iterations == -1 && !override_max_iterations && iterations >= max_iterations)
            break;
        auto [current_A, choices] = queue.front();
        queue.pop();
        int i = choice(current_A);
        if (i == 0)
            continue;
        auto [LA, RA] = ResolutionStep(current_A, i);
        {
            bool conflict = false;
            for (const auto &cl : LA)
                if (cl.l[0] == 0 && cl.l[1] == 0 && cl.l[2] == 0) { conflict = true; break; }
            if (!LA.empty() && !conflict) {
                std::vector<int> new_choices = choices;
                new_choices.push_back(i);
                queue.push({LA, new_choices});
                task_count++;
            }
        }
        {
            bool conflict = false;
            for (const auto &cl : RA)
                if (cl.l[0] == 0 && cl.l[1] == 0 && cl.l[2] == 0) { conflict = true; break; }
            if (!RA.empty() && !conflict) {
                std::vector<int> new_choices = choices;
                new_choices.push_back(-i);
                queue.push({RA, new_choices});
                task_count++;
            }
        }
        iterations++;

        if ((task_count != previous_task_count || iterations != previous_iterations) && world_rank == 0) {

            std::cout << "\r\033[K  Queue size: " << queue.size() << " - Depth: " << iterations << " - Tasks: " << task_count << std::flush;
            previous_task_count = task_count;
            previous_iterations = iterations;
        }

        if (max_queues <= 0 && iterations >= max_iterations)
            break;
    }
    
	if (initial_queue_size == 0) {
	initial_queue_size = queue.size();
    }
    
    return {queue, task_count};
}

void ExtractInputsFromDimacs(const std::string& dimacsString, std::vector<int>& v1, std::vector<int>& v2) {
    PROFILE_SCOPE("ExtractInputsFromDimacs");
    std::regex regex_first_input(R"(Variables for first input \[msb,...,lsb\]: \[(.*?)\])");
    std::regex regex_second_input(R"(Variables for second input \[msb,...,lsb\]: \[(.*?)\])");

    std::smatch match;

    if (std::regex_search(dimacsString, match, regex_first_input)) {
        std::string numbers = match[1].str();
        std::istringstream iss(numbers);
        std::string number;
        while (std::getline(iss, number, ',')) {
            try {
                v1.push_back(std::stoi(number));
            } catch (const std::invalid_argument& e) {
                std::cout << "\nInvalid argument while converting to int: " << number << std::endl;
                throw;
            } catch (const std::out_of_range& e) {
                std::cout << "\nOut of range error while converting to int: " << number << std::endl;
                throw;
            }
        }
    } else {
        std::cout << "\nError: Could not find 'first input' section in the DIMACS string.\n" << std::endl;
    }

    if (std::regex_search(dimacsString, match, regex_second_input)) {
        std::string numbers = match[1].str();
        std::istringstream iss(numbers);
        std::string number;
        while (std::getline(iss, number, ',')) {
            try {
                v2.push_back(std::stoi(number));
            } catch (const std::invalid_argument& e) {
                std::cout << "Invalid argument while converting to int: " << number << std::endl;
                throw;
            } catch (const std::out_of_range& e) {
                std::cout << "Out of range error while converting to int: " << number << std::endl;
                throw;
            }
        }
    } else {
        std::cout << "\nError: Could not find 'second input' section in the DIMACS string.\n" << std::endl;
    }
}

std::string mpz_to_string(const mpz_class& num) {
    PROFILE_SCOPE("mpz_to_string");
    return num.get_str();
}

big_int binaryStringToDecimal(const std::string& binaryString) {
    PROFILE_SCOPE("binaryStringToDecimal");
    big_int result = 0;
    for (char c : binaryString) {
        result *= 2;
        if (c == '1')
            result += 1;
    }
    return result;
}

big_int processVector(const std::vector<int>& v, std::vector<int> vec) {
    PROFILE_SCOPE("processVector");
    std::string binaryString;
    std::unordered_set<int> v_set(v.begin(), v.end());
    for (int k : vec)
        binaryString += (v_set.find(k) != v_set.end()) ? '1' : '0';
    return binaryStringToDecimal(binaryString);
}

std::pair<big_int, big_int> convert(const std::vector<std::vector<int>>& v, 
                                    const std::vector<int>& v1, 
                                    const std::vector<int>& v2) {
    PROFILE_SCOPE("convert");
    if (v.empty())
        throw std::runtime_error("\nError: Input vector 'v' is empty.\n");
    const std::vector<int>& firstElement = v[0];
    big_int d1 = processVector(firstElement, v1);
    big_int d2 = processVector(firstElement, v2);
    return {d1, d2};
}

// +++ DEFINE MAX_ITERATIONS DEFAULTS +++
// +++ dynamic approach: num_clauses - ((world_size /2) * num_bits)
int calculate_max_iterations(int world_size, int num_clauses, int num_vars, int num_bits) {
    PROFILE_SCOPE("calculate_max_iterations");
    
    int max_iterations = num_clauses - num_vars + ((world_size /2) * num_bits);

    return max_iterations;
}

int printWorkerCount(const std::string& version, int world_rank, int world_size) {
    PROFILE_SCOPE("printWorkerCount");
    char processor_name[MPI_MAX_PROCESSOR_NAME];
    int name_len;
    MPI_Get_processor_name(processor_name, &name_len);

    std::vector<char> all_names(world_size * MPI_MAX_PROCESSOR_NAME);
    MPI_Gather(processor_name, MPI_MAX_PROCESSOR_NAME, MPI_CHAR,
               all_names.data(), MPI_MAX_PROCESSOR_NAME, MPI_CHAR,
               0, MPI_COMM_WORLD);

    int worker_count = (world_rank != 0) ? 1 : 0;
    int total_worker_count = 0;
    MPI_Reduce(&worker_count, &total_worker_count, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

    if (world_rank == 0) {
        total_worker_count += 1;

        std::map<std::string, int> node_core_count;
        for (int i = 0; i < world_size; ++i) {
            std::string node_name(&all_names[i * MPI_MAX_PROCESSOR_NAME]);
            node_core_count[node_name]++;
        }

		std::cout << "\n" << version << "\n" << std::endl;
		for (const auto& [node_name, core_count] : node_core_count) {
			std::cout << " " << node_name << " - " << core_count << " cores" << std::endl;
		}
		std::cout << "\n Total Cores: " << total_worker_count << std::endl;

    }
    
	return total_worker_count;
}

void printHeadNodeDetails(mpz_class input_number, int num_bits, int num_clauses,
                          int num_vars, bool override_max_max_iterations, int depth, int max_queues) {
    PROFILE_SCOPE("printHeadNodeDetails");
    std::cout << "\nInput Number: " << input_number << std::endl;
    std::cout << "        Bits: " << num_bits << std::endl;
    std::cout << "     Clauses: " << num_clauses << std::endl;
    std::cout << "        VARs: " << num_vars << std::endl;
    std::cout << std::endl;

    if (max_queues > 0) {
        std::cout << "  Queue size: " << max_queues << std::endl;
    } 
    else if (depth > 0) {
        std::cout << "       Depth: " << depth << std::endl;
    }
    
    std::cout << std::endl;
}

std::string formatPercentage(double part, double total) {
	PROFILE_SCOPE("formatPercentage");
    double percentage = (total > 0.0) ? (part / total) * 100.0 : 0.0;
    std::stringstream ss;
    ss << std::fixed << std::setprecision(2) << percentage << "%";
    return ss.str();
}

void exportResultsToFile(const std::string& filename, const std::string& content) {
    PROFILE_SCOPE("exportResultsToFile");
    std::ofstream outFile(filename);
    if (outFile.is_open()) {
        outFile << content;
        outFile.close();
    } else {
        std::cout << "\n  Error: Could not write to file " << filename << std::endl;
        std::cout << "\n" << std::endl;
	std::terminate();
    }
}

std::string formatVector(const std::vector<int>& vec) {
    std::ostringstream oss;
    oss << "[";
    for (size_t i = 0; i < vec.size(); ++i) {
        oss << vec[i];
        if (i < vec.size() - 1) {
            oss << ", ";
        }
    }
    oss << "]";
    return oss.str();
}

void generate_output(bool solution_found, const std::vector<std::vector<int>>& valid_solutions, 
                     const std::chrono::duration<double>& bfs_duration, 
                     const std::chrono::duration<double>& dfs_duration, 
                     int num_bits, int num_vars, int num_clauses, mpz_class input_number, 
                     const std::vector<int>& v1, const std::vector<int>& v2, 
                     const std::string& script_name, const std::string& filename, 
                     const std::string& cli_flag, const std::string& output_directory, 
                     int iterations, const size_t &initial_queue_size, int world_rank, int world_size,
                     int final_queue_size) {

    PROFILE_SCOPE("generate_output");
    std::chrono::duration<double> ndp_duration = bfs_duration + dfs_duration;
    std::ostringstream output_ss;

    output_ss << std::fixed << std::setprecision(2);
    int processed_queues = initial_queue_size - final_queue_size;

    if (solution_found) {
        for (const auto& solution : valid_solutions) {
            auto [d1, d2] = convert({solution}, v1, v2);

        output_ss << "\n\n                                  Process " << world_rank << " found a solution!\n"
                  << "                    Remaining Queue Size: " << final_queue_size << "\n"
                  << "\nInput Number: " << input_number << "\n"
                  << "      FACT 1: " << d1 << "\n"
                  << "      FACT 2: " << d2 << "\n";
        output_ss << (d1 * d2 == input_number ? "              verified.\n" : "              FALSE\n");
        }
    } else {
        output_ss << "\n\nInput Number: " << input_number << "\n"
                  << "              Prime!\n";
    }

    output_ss << "\n        Bits: " << num_bits;
    output_ss << "\n        VARs: " << num_vars;
    output_ss << "\n     Clauses: " << num_clauses;

    output_ss << "\n\n    BFS time: " << bfs_duration.count() << " seconds (" 
              << formatPercentage(bfs_duration.count(), ndp_duration.count()) << ")\n"
              << "              " << formatDuration(bfs_duration.count()) << "";

    output_ss << "    DFS time: " << dfs_duration.count() << " seconds (" 
              << formatPercentage(dfs_duration.count(), ndp_duration.count()) << ")\n"
              << "              " << formatDuration(dfs_duration.count()) << "";

    output_ss << "    NDP time: " << ndp_duration.count() << " seconds\n"
              << "              " << formatDuration(ndp_duration.count()) << "";

    output_ss << "\n Total Cores: " << world_size << "\n"
              << "  Queue Size: " << initial_queue_size << "\n"
              << "Proc. Queues: " << processed_queues << "\n"
              << "       Depth: " << iterations << "\n";

    output_ss << version << "\n"
              << "      DIMACS: " << filename << "\n";

    std::string utcTime = getCurrentUTCTime();
    output_ss << "   Zulu time: " << utcTime << "\n";
    std::string problemID = createProblemID(input_number.get_str(), num_bits, world_size, utcTime);
    output_ss << "  Problem ID: " << problemID << "\n";

    char processor_name[MPI_MAX_PROCESSOR_NAME];
    int name_len;
    MPI_Get_processor_name(processor_name, &name_len);

    std::cout << output_ss.str();

	for (const auto& solution : valid_solutions) {
		output_ss << "\n Assignments: " << formatVector(solution) << "\n";
	}

    std::string input_filename_only = std::filesystem::path(filename).filename().string();
    std::string output_filename = formatFilename(script_name, input_filename_only, problemID, cli_flag);
    std::string full_output_path = output_directory + "/" + output_filename;
    exportResultsToFile(full_output_path, output_ss.str());

    std::cout << "Result saved: " << full_output_path << "\n"
              << "     On node: " << processor_name << "\n" << std::endl;
}

std::vector<int> flattenClauseSet(const ClauseSet& clauses) {
    std::vector<int> flat_data;
    for (const auto& clause : clauses) {
        for (int lit : clause.l) {
            flat_data.push_back(lit);
        }
    }
    return flat_data;
}

ClauseSet unflattenClauseSet(const std::vector<int>& flat_data) {
    ClauseSet clauses;
    for (size_t i = 0; i < flat_data.size(); i += 3) {
        Clause3 clause;
        clause.l[0] = flat_data[i];
        clause.l[1] = flat_data[i + 1];
        clause.l[2] = flat_data[i + 2];
        clauses.push_back(clause);
    }
    return clauses;
}

std::vector<std::vector<int>> process_queue(
    std::queue<std::pair<ClauseSet, std::vector<int>>> queue, 
    bool parallel, big_int input_number, int num_bits, int num_vars, int num_clauses, 
    std::vector<int>& v1, std::vector<int>& v2,
    std::chrono::high_resolution_clock::time_point bfs_start,
    std::chrono::high_resolution_clock::time_point dfs_start, int task_count,
    const std::string& script_name, const std::string& filename, const std::string& cli_flag,
    const std::string& output_directory, int iterations, size_t& initial_queue_size, 
    int world_rank, int world_size, MPI_Comm mpi_comm,
    const std::chrono::duration<double>& bfs_duration) {

    PROFILE_SCOPE("process_queue");
    
    std::vector<std::vector<int>> valid_solutions;
    std::unordered_map<int, std::pair<ClauseSet, std::vector<int>>> task_assignments;
    std::unordered_map<int, bool> task_states;
    std::unordered_map<int, bool> worker_active;
    std::unordered_map<int, std::chrono::steady_clock::time_point> worker_last_seen;

	std::atomic<bool> solution_found(false);
    std::atomic<int> active_workers_count(0);
    std::atomic<int> pending_tasks(0);
    std::atomic<int> total_tasks_assigned(0);

	std::mutex queue_mtx;
    int flat_clause_size = 0, choices_size = 0;
    MPI_Status status;
    int flag = 0;
	ClauseSetPool csPool;

    bool queue_processed = false;

    if (parallel) {
        if (world_rank == 0) {
            std::cout << std::fixed << std::setprecision(2);
            std::cout << "\n\n    BFS time: " << bfs_duration.count() << " seconds  -  DFS parallel initiated.." 
                      << std::endl;
        }

        auto dfs_start_time = std::chrono::high_resolution_clock::now();
		std::atomic<int> final_queue_size(queue.size());
		
        std::thread time_printer([&]() {
        	PROFILE_SCOPE("time_printer");
            if (world_rank == 0) {
                while (!solution_found.load()) {
                    std::this_thread::sleep_for(std::chrono::seconds(1));
                    auto now = std::chrono::high_resolution_clock::now();
                    auto elapsed = std::chrono::duration_cast<std::chrono::seconds>(now - dfs_start_time);
                    {
                    	std::lock_guard<std::mutex> lock(queue_mtx);
                    	final_queue_size.store(queue.size(), std::memory_order_relaxed);
						std::cout << "\033[2K\r    DFS time: " << elapsed.count() << " seconds"
								  << "  -  Remaining Queue Size: " << queue.size()
								  << "  -  Active Workers: " << pending_tasks.load()
								  << std::flush;
                	}
                }
            }
        });
        	
        if (world_rank == 0) {
			while ((!queue_processed || pending_tasks.load() > 0) && !solution_found.load()) {
                MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, mpi_comm, &flag, &status);

                if (flag) {
                    MPI_Recv(&flat_clause_size, 1, MPI_INT, status.MPI_SOURCE, MPI_ANY_TAG, mpi_comm, &status);

                     if (status.MPI_TAG == TAG_SOLUTION_FOUND) {
                        solution_found.store(true);
                        
                        int current_queue_size = queue.size(); 
                        MPI_Send(&current_queue_size, 1, MPI_INT, 
                        status.MPI_SOURCE, TAG_QUEUE_SIZE, mpi_comm);

                    } 
                    else if (status.MPI_TAG == TAG_TASK_DONE) {
                    	int worker_id = status.MPI_SOURCE;
                        pending_tasks.fetch_sub(1, std::memory_order_relaxed);
                    } 
                    else if (flat_clause_size == -1) {
                        if (worker_active[status.MPI_SOURCE]) {
                            worker_active[status.MPI_SOURCE] = false;
                            --active_workers_count;
                        }
                    }
                    else if (status.MPI_TAG == TAG_REGISTER_WORKER) {
                        if (!worker_active[status.MPI_SOURCE]) {
                            worker_active[status.MPI_SOURCE] = true;
                            ++active_workers_count;
                            worker_last_seen[status.MPI_SOURCE] = std::chrono::steady_clock::now();
                        }
                    }
                    else if (!queue.empty()) {
                        auto task = queue.front();
                        queue.pop();

                        pending_tasks.fetch_add(1, std::memory_order_relaxed);
                        total_tasks_assigned.fetch_add(1, std::memory_order_relaxed);
						
                        int task_id = hashTask(task);
                        if (task_states[task_id]) {
                            continue;
                        }

                        task_assignments[status.MPI_SOURCE] = task;
                        task_states[task_id] = true;

                        std::vector<int> flat_clauses = flattenClauseSet(task.first);
                        flat_clause_size = flat_clauses.size();
                        choices_size = task.second.size();

                        MPI_Send(&flat_clause_size, 1, MPI_INT, status.MPI_SOURCE, 0, mpi_comm);
                        MPI_Send(flat_clauses.data(), flat_clause_size, MPI_INT, status.MPI_SOURCE, 0, mpi_comm);
                        MPI_Send(&choices_size, 1, MPI_INT, status.MPI_SOURCE, 0, mpi_comm);
                        if (choices_size > 0) {
                            MPI_Send(task.second.data(), choices_size, MPI_INT, status.MPI_SOURCE, 0, mpi_comm);
                        }
                    } else if (!queue_processed && pending_tasks.load() > 0) {
                        queue_processed = true;
                        std::cout << "\n\n              Queue fully processed. Waiting for workers to complete tasks...\n\n";
                    }
                }

                // Check for inactive workers
                auto now = std::chrono::steady_clock::now();
				for (auto it = worker_last_seen.begin(); it != worker_last_seen.end();) {
					if (std::chrono::duration_cast<std::chrono::seconds>(now - it->second).count() > 3) {
						int worker_id = it->first;
						if (worker_active[worker_id]) {
							worker_active[worker_id] = false;
							--active_workers_count;
							pending_tasks.fetch_sub(1, std::memory_order_relaxed);
						}
						it = worker_last_seen.erase(it);
					} else {
						++it;
					}
				}

                if (queue_processed && pending_tasks.load() > 0) {
                    std::this_thread::sleep_for(std::chrono::milliseconds(200));                    
                }
            }

            for (int worker = 1; worker < world_size; ++worker) {
                int termination_signal = -1;
                MPI_Send(&termination_signal, 1, MPI_INT, worker, 0, mpi_comm);
            }

			// Wait for remaining workers to exit (up to 5 seconds)
			auto cleanup_start = std::chrono::steady_clock::now();
			while (pending_tasks.load() > 0 && 
				   std::chrono::steady_clock::now() - cleanup_start < std::chrono::seconds(5)) {
				MPI_Iprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, mpi_comm, &flag, &status);
				if (flag) {
					// Handle any final messages (e.g., worker exits)
					MPI_Recv(&flat_clause_size, 1, MPI_INT, status.MPI_SOURCE, MPI_ANY_TAG, mpi_comm, &status);
					if (flat_clause_size == -1) {
						if (worker_active[status.MPI_SOURCE]) {
							worker_active[status.MPI_SOURCE] = false;
							--active_workers_count;
						}
					}
				}
				std::this_thread::sleep_for(std::chrono::milliseconds(100));
			}

            if (!solution_found && pending_tasks.load() == 0) {
                generate_output(false, {}, bfs_duration,
                                std::chrono::high_resolution_clock::now() - dfs_start,
                                num_bits, num_vars, num_clauses, input_number, v1, v2,
                                script_name, filename, cli_flag, output_directory,
                                iterations, initial_queue_size, world_rank, world_size, 0);

                std::terminate();
            }
        } else {
        	while (true) {
                MPI_Send(&world_rank, 1, MPI_INT, 0, 0, mpi_comm);
                MPI_Recv(&flat_clause_size, 1, MPI_INT, 0, MPI_ANY_TAG, mpi_comm, &status);
                
                if (flat_clause_size == -1) break;
                
                std::vector<int> flat_clauses(flat_clause_size);
                MPI_Recv(flat_clauses.data(), flat_clause_size, MPI_INT, 0, 0, mpi_comm, &status);

                MPI_Recv(&choices_size, 1, MPI_INT, 0, 0, mpi_comm, &status);
                std::vector<int> choices(choices_size);
                if (choices_size > 0) {
                    MPI_Recv(choices.data(), choices_size, MPI_INT, 0, 0, mpi_comm, &status);
                }

                ClauseSet* clause_set = csPool.obtain();
                *clause_set = unflattenClauseSet(flat_clauses);
                auto new_choices = Satisfy_iterative(*clause_set, true);
                csPool.release(clause_set);
                
                MPI_Send(nullptr, 0, MPI_INT, 0, TAG_TASK_DONE, mpi_comm);

                for (const auto& nc : new_choices) {
                    std::vector<int> final_choices_i = choices;
                    final_choices_i.insert(final_choices_i.end(), nc.begin(), nc.end());
					pending_tasks.fetch_add(1, std::memory_order_relaxed);
					total_tasks_assigned++;
					valid_solutions.push_back(final_choices_i);
					solution_found.store(true);
					MPI_Send(nullptr, 0, MPI_INT, 0, TAG_SOLUTION_FOUND, mpi_comm);
					
					int current_queue_size;
					MPI_Recv(&current_queue_size, 1, MPI_INT, 0, TAG_QUEUE_SIZE, mpi_comm, &status);

                    generate_output(true, {final_choices_i}, bfs_duration,
                                    std::chrono::high_resolution_clock::now() - dfs_start,
                                    num_bits, num_vars, num_clauses, input_number, v1, v2,
                                    script_name, filename, cli_flag, output_directory, 
                                    iterations, initial_queue_size, world_rank, world_size,
                                    current_queue_size);
                    std::terminate();
                }
            }
        }
        time_printer.join();
    }
    return valid_solutions;
}

std::string readFileToString(const std::string& filename) {
    PROFILE_SCOPE("readFileToString");
    std::ifstream file(filename);
    if (!file.is_open()) {
        std::cout << "\nError: Could not open file " << filename << std::endl;
        return "";
    }

    std::ostringstream oss;
    oss << file.rdbuf();
    return oss.str();
}

void parseCLIOptions(int argc, char* argv[], bool& spot_instance_ready, bool& resume_from_bfs, std::string& bfs_filename_to_resume, int& max_queues,
					 int& depth, bool& override_max_iterations, std::string& cli_flag, int world_rank, int worker_count) {
    PROFILE_SCOPE("parseCLIOptions");
    if (argc < 2) {
        std::cout << "\n               Usage: " << argv[0]
                  << "               <filename> [-s spot_instance_ready] [-r resume_from_bfs] [-d depth | -q max_queues]\n"
                  << "\n"
                  << "               Note: -d (depth) and -q (max_queues) cannot be used together.\n\n\n"
                  << std::endl;
        std::terminate();
    }
    bool has_depth = false, has_queues = false;
    cli_flag.clear();
    
    std::string filename = argv[1];
    if (filename[0] == '-') {
        std::cout << "\n\n               [ERROR] Missing input filename.\n";
        std::cout << "               Please provide a valid filename as the first argument.\n\n\n";
        std::terminate();
    }
    
    for (int i = 2; i < argc; ++i) {
        std::string option = argv[i];

        if (option == "-s") {
            spot_instance_ready = true;
            std::cout << "\n\n              saving BFS after completion!\n\n";
        } else if (option == "-r") {
            resume_from_bfs = true;
            if (i + 1 < argc && argv[i + 1][0] != '-') {
                bfs_filename_to_resume = argv[++i];
            } else {
            	if (world_rank == 0) {
                	bfs_filename_to_resume = promptForJSONFile(world_rank);
                }
            }
            
        } else if (option == "-q" && i + 1 < argc) {
            if (has_depth) {
                std::cout << "\n\n               Error: Invalid combination: -q (max_queues) cannot be used with -d (depth).\n\n\n";
                std::terminate();
            }
            max_queues = std::stoi(argv[++i]);
            override_max_iterations = true;
            cli_flag += "q" + std::to_string(max_queues);
            has_queues = true;

        } else if (option == "-d" && i + 1 < argc) {
            if (has_queues) {
                std::cout << "\n\n               Error: Invalid combination: -d (depth) cannot be used with -q (max_queues).\n\n\n";
                std::terminate();
            }
            depth = std::stoi(argv[++i]);
            cli_flag += "d" + std::to_string(depth);
            has_depth = true;

        } else {
            std::cout << "\n\n               [ERROR] Unknown or invalid argument: " << option << std::endl;
            std::cout << "\n               Usage:\n"
                      << "               <filename> [-s spot_instance_ready] [-r resume_from_bfs] [-d depth | -q max_queues]\n"
                      << "\n"
                      << "               Note: -d (depth) and -q (max_queues) cannot be used together.\n\n\n"
                      << std::endl;
            std::terminate();
        }
    }
    if (!has_depth && !has_queues) {
        cli_flag = "auto";
    }
}

int main(int argc, char* argv[]) {
    PROFILE_SCOPE("main");
    MPI_Init(&argc, &argv);
    int world_rank, world_size;
    MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
    MPI_Comm_size(MPI_COMM_WORLD, &world_size);

    const int HEAD_NODE = 0;

    int max_queues = -1;
    int total_cores = sysconf(_SC_NPROCESSORS_ONLN);
    int depth = 0;
    int num_bits = 0;
    int num_vars = 0;
    int num_clauses = 0;
    int iterations = 0;
    int task_count = 0;
    int worker_count = 0;
    size_t initial_queue_size = 0;
    bool override_max_iterations = false;
    bool spot_instance_ready = false;
    bool resume_from_bfs = false;

    std::string bfs_filename_to_resume;
    std::string utcTime = getCurrentUTCTime();
	std::string cli_flag;
	std::string script_name = std::filesystem::path(argv[0]).stem().string();
	std::string output_directory = getWorkingDirectory();
    
    if (world_rank == 0) {
        parseCLIOptions(argc, argv, spot_instance_ready, resume_from_bfs, bfs_filename_to_resume, max_queues, depth, override_max_iterations, cli_flag, world_rank, worker_count);
    }
    std::cout << std::fixed << std::setprecision(2);

    MPI_Bcast(&max_queues, 1, MPI_INT, 0, MPI_COMM_WORLD);
    MPI_Bcast(&depth, 1, MPI_INT, 0, MPI_COMM_WORLD);
    MPI_Bcast(&override_max_iterations, 1, MPI_C_BOOL, 0, MPI_COMM_WORLD);

    int cli_flag_length = cli_flag.size();
    MPI_Bcast(&cli_flag_length, 1, MPI_INT, 0, MPI_COMM_WORLD);
    cli_flag.resize(cli_flag_length);
    MPI_Bcast(cli_flag.data(), cli_flag_length, MPI_CHAR, 0, MPI_COMM_WORLD);
    MPI_Barrier(MPI_COMM_WORLD);

    std::string filename = argv[1];
    std::string fileContent = readFileToString(filename);
    if (fileContent.empty()) {
        std::cout << "\n\n               Error: reading file or file is empty.\n\n\n" << std::endl;
        return 1;
    }
    std::smatch match;
    std::regex regex_product(R"(Circuit for product = ([0-9]+) \[)");
    std::regex regex_problem(R"(p cnf ([0-9]+) ([0-9]+))");

    if (std::regex_search(fileContent, match, regex_problem)) {
        num_vars = std::stoi(match[1].str());
        num_clauses = std::stoi(match[2].str());

        std::regex regex_bits(R"(Variables for second input \[msb,...,lsb\]: \[.*?,\s*(\d+)\])");
        if (std::regex_search(fileContent, match, regex_bits)) {
            num_bits = std::stoi(match[1].str());
        }
    } else {
        std::cout << "\nError: Could not extract number of variables and clauses from DIMACS header.\n" << std::endl;
        return 1;
    }
    if (depth == 0 && !override_max_iterations) {
        depth = calculate_max_iterations(world_size, num_clauses, num_vars, num_bits);
    }
    mpz_class input_number;
    if (std::regex_search(fileContent, match, regex_product)) {
        input_number.set_str(match[1].str(), 10);
    } else {
        std::cout << "\nError: Could not extract input number from DIMACS header.\n" << std::endl;
        return 1;
    }
    
    std::string problemID = createProblemID(input_number.get_str(), num_bits, world_size, utcTime);
	
    printWorkerCount(version, world_rank, world_size);
    MPI_Barrier(MPI_COMM_WORLD);

    if (world_rank == 0) {
        printHeadNodeDetails(input_number, num_bits, num_clauses, num_vars,
                             override_max_iterations, depth, max_queues);
    }
    ClauseSet clauses = parseDimacsString(fileContent);
    if (clauses.empty()) {
        throw std::runtime_error("\n  Error parsing DIMACS string.\n");
    }
    std::vector<int> v1;
    std::vector<int> v2;

    ExtractInputsFromDimacs(fileContent, v1, v2);

	std::queue<std::pair<ClauseSet, std::vector<int>>> bfs_queue;

    auto bfs_start = std::chrono::high_resolution_clock::now();
	double bfs_duration = 0.0;
	
	if (resume_from_bfs) {
		if (world_rank == 0) {
			auto [loaded_queue, loaded_duration] = readBFSResults(bfs_filename_to_resume);
			bfs_queue = loaded_queue;
			bfs_duration = loaded_duration;
			std::cout << "\n\n     Loading: " << bfs_filename_to_resume << "\n"
					  << "  Queue size: " << bfs_queue.size() << "\n"
					  << " ET BFS time: " << bfs_duration << " seconds\n";
			}
		MPI_Barrier(MPI_COMM_WORLD);
	} else {
		auto [results, task_count_] = Satisfy_iterative_BFS(clauses, depth, override_max_iterations, iterations, max_queues, world_rank, initial_queue_size);
		auto bfs_end = std::chrono::high_resolution_clock::now();
		bfs_duration = std::chrono::duration<double>(bfs_end - bfs_start).count();
		MPI_Barrier(MPI_COMM_WORLD);		
		bfs_queue = results;
		task_count = task_count_;
	
		if (spot_instance_ready && world_rank == 0) {
			auto bfs_end = std::chrono::high_resolution_clock::now();
			bfs_duration = std::chrono::duration<double>(bfs_end - bfs_start).count();
			saveBFSResults(bfs_queue, script_name, filename, problemID, cli_flag, output_directory, bfs_duration);
		}
	}

	MPI_Bcast(&bfs_duration, 1, MPI_DOUBLE, HEAD_NODE, MPI_COMM_WORLD);

    const size_t &locked_initial_queue_size = initial_queue_size;

	std::chrono::duration<double> bfs_duration_chrono(bfs_duration);

    auto dfs_start = std::chrono::high_resolution_clock::now();
	
	process_queue(bfs_queue, true, input_number, num_bits, num_vars, num_clauses,
				  v1, v2, bfs_start, dfs_start, task_count, script_name, filename,
				  cli_flag, output_directory, iterations,
				  initial_queue_size, world_rank, world_size, MPI_COMM_WORLD,
				  bfs_duration_chrono);
              
	auto dfs_end = std::chrono::high_resolution_clock::now();
	double local_dfs_time = std::chrono::duration<double>(dfs_end - dfs_start).count();
	double global_dfs_time = 0.0;
	
	MPI_Reduce(&local_dfs_time, &global_dfs_time, 1, MPI_DOUBLE, MPI_MAX, HEAD_NODE, MPI_COMM_WORLD);
		
	MPI_Barrier(MPI_COMM_WORLD);
    MPI_Finalize();
    close(dev_null);
    return 0;
}
Copyright © GridSAT Stiftung 2021-2025
All Rights Waived. Reprint and use freely, in any manner desired, even without naming the source.
Imprint & Privacy