US 20200242150A1

a2y Patent Application Publication o) Pub. No.: US 2020/0242150 A1l

a9 United States

Abdelwahab

43) Pub. Date: Jul. 30, 2020

(54) METHOD FOR CREATING AN EFFICIENT,
LOGICALLY COMPLETE, ONTOLOGICAL
LEVEL IN THE EXTENDED RELATIONAL
DATABASE CONCEPT

(71) Applicant: Elnaserledinellah Mahmoud Elsayed
Abdelwahab, Cairo (EG)

(72) Inventor: Elnaserledinellah Mahmoud Elsayed

Abdelwahab, Cairo (EG)

(21) Appl. No.: 16/596,147

(22) Filed: Oct. 8, 2019
(30) Foreign Application Priority Data
Oct. 9,2018 (DE) .coovvviicinn 10 2018 008 923.2

Publication Classification
(51) Int. CL

GO6F 16/36 (2006.01)
GO6F 16/28 (2006.01)
GI0L 15/26 (2006.01)
GO6N 5/00 (2006.01)

Database-Level

Numbering Unit

(52) US.CL
CPC ... GOGF 16/367 (2019.01); GO6N 5/003
(2013.01); GIOL 15/265 (2013.01); GO6F
16/284 (2019.01)

(57) ABSTRACT

In relational database concepts, query procedures suffer
either from logically incomplete query results or lack of
query time efficiency. The present invention provides effi-
cient methods that optimize relational database systems in
their query procedures so that the response procedure expe-
riences an increase in efficiency in terms of speed and
memory requirements without sacrificing logical conditions.
In order to increase the efficiency of the query methods, a
logically complete and at the same time efficient ontological
level is introduced, which makes it possible to derive and/or
evaluate application-specific constraints both, deductively
and inductively.

It is the object of this invention to provide methods by which
one can create a logically complete, efficient, ontological
conceptual system in the catalog level of a relational data-
base system that allows deduction as well as complete
induction in its most general form insofar as that logical and
natural language explanations of all system responses can be
achieved. The inventive solution to this problem is specified
in the claims 1-13.

Ontology-Level

onceptual Framewor

- Record validation
- SQL optimization

DA oDC
DN
DTC Dc DDC
Machine Company ’ nductive Ruies/)‘3‘%5
< 5 CDC | _SeM | TRC | | LRC
' ! I Soldtions

System response with explanation

US 2020/0242150 A1

Jul. 30,2020 Sheet 1 of 5

Patent Application Publication

I D14

U1

uonjeue[dxd Yum asuodsar woskg

H

suonp{os J

WIS

D

al

Sy @g

oLd

Av‘»!’bi‘,
0ao %\Q

JOoMItuBI RS&QDOQO P

[9AT-A301031U()

woneziwndo TOS

Auedwon)

[°eA97T-95eqele(d

UOTIRPI[RA PIODY

QUIYOBIA

nu Sunaquuiny

Patent Application Publication Jul. 30, 2020 Sheet 2 of 5 US 2020/0242150 A1

F1G. 2

Patent Application Publication Jul. 30, 2020 Sheet 3 of 5 US 2020/0242150 A1

P

endt

fawnld

fpanid

F1G. 3

Patent Application Publication

Jul. 30,2020 Sheet 4 of 5

Noun Phrase

.

Statement

Genitive

4/l

Noun 74

definit

Y

Genitive

US 2020/0242150 A1

\

7 indefinite

m v indefinite

“o™ definite

w’

" indefinite

b
C

Al sl

Patent Application Publication Jul. 30, 2020 Sheet 5 of 5 US 2020/0242150 A1

Noun Phrase

T,

Statement Noun
v
definite indefinite
i FIG. 4B
v
Al ¢

US 2020/0242150 Al

METHOD FOR CREATING AN EFFICIENT,

LOGICALLY COMPLETE, ONTOLOGICAL

LEVEL IN THE EXTENDED RELATIONAL
DATABASE CONCEPT

TECHNICAL FIELD

[0001] The invention relates to a method for creating an
ontological term system in the meta level of the relational
database model, which is at the same time efficient and
logically complete. In furtherance of the writing the entire
system is called: Rational system (RS). The components of
the ontological level of this system (listed in FIG. 1) are as
follows:

[0002] 1) Ontology Description Component (ODC),
consisting of a graph- or logic-based editor of axioms
(ontology structure) and facts.

[0003] 2) Decision Tree Component (DTC), which has
the goal to provide selected constraints in CNF form as
explicit Binary Decision Diagrams using SAT-solver
methods. This component contains a CNF-based Con-
straints Definition Component (CDC) and a Solution
Counting Procedure (SCP).

[0004] 3) Inductive Derivative Component (IDC),
whose task is to generate combinatorics for selected
parts of the overall system, for which no explicit
constraints are known. In consequence, a complete
induction procedure assists in inferring such con-
straints.

[0005] 4) Deductive Derivative Component (DDC) that
applies syllogisms to selected parts of the overall
system using a Language Recognition Component
(LRC). A Translation Component (TRC) ensures that
records from the database are rewritten into categorical
statements.

[0006] 5) Rational Response Component (RRC), which
can explain each response to a request made to the
overall system by means of stored constraints (of DTC
or IDC).

[0007] In contrast to known methods in deductive and
relational databases, the RS not only allows linear process-
ing times for entries and the improvement of database query
procedures without endangering the logical consistency (cf.
DE102015013593A1), but also allows a balanced applica-
tion of known, efficient, logical procedures for the overall
system: While DTC uses efficient methods of a priori
completion for selected, difficult Boolean functions, DDC
achieves fast response times regardless of the usual SQL
machinery. According to the invention, this is achieved by
simple, natural language-supported, syllogistic-based meth-
ods.

[0008] In addition, RRC offers the possibility of an intel-
ligent system reaction, which justifies every answer using
rules of logic (hence the property: rational). The constraints
obtained by IDC do not require explicit verification and/or
test procedures, since they originate from a mathematically
stringent, complete induction. Using such constraints, the
IDC also allows a compact representation of the combina-
torics of selected parts of the overall system. The RS thus
fulfills all the necessary criteria of a practically implement-
able logical system in its most general form, which can be
used for terminological and logical control in most database
applications.

Jul. 30, 2020

PRIOR ART

[0009] Methods are known for generating ontology mod-
els from requirement documents and software as well as
carrying out consistency checks between requirement docu-
ments and software code using ontology models. Terms are
identified from the large number of requirement documents
that are stored in a database. A processor assigns a term a
word-tag. The word-tag indicates a grammatical use of each
term in the requirement documents. The processor classifies
each term based on word-tags. To form an ontology, the
classification identifies whether each term is a part, symp-
tom, action, event, or failure mode. The processor constructs
an ontology-based consistency machine. A consistency
check is carried out by applying the ontology-based consis-
tency engine between ontologies extracted from two context
documents. Inconsistent terms between the context docu-
ments are identified. At least one of the context documents
with inconsistent terms is corrected (cf.
DE102015121509A1). The disadvantage here is that the
consistency and completeness of the ontology constructed in
this way is disregarded.

[0010] Methods are known in which ambiguity is handled,
which occurs when natural language information is com-
bined with the knowledge represented by ontologies. Ambi-
guity is due to the fact that the same natural language
identifier can denote several elements of the ontology. These
procedures present a basic methodology of how the appro-
priate ontology element can be determined despite ambigu-
ity. The approach is based on the human approach and the
use of the context for monosemination. This represents the
relationship between the entities mentioned in the text.
These methods simulate the context of the text envelope
based on the relationships within the ontology graph and
disambiguate it by analyzing it. It is disadvantageous that the
logical derivation (whether deduction or induction) is not
affected (cf. Kleb, J.; Ontologie-basierte Monosemierung—
Bestimmung von Referenzen im Semantic Web; KIT Sci-
entific Publishing; 2015; DOI 10.5445/KSP/1000031500).
[0011] Methods are known for supporting the search for
proven and existing solutions in the context of the devel-
opment of technical products. Access to these solutions is
made possible by considering the functions of technical
systems from a usage perspective. The searcher is provided
with a suitable solution space with relevant solutions using
semantic networks. This can limit and expand the room
according to various criteria. The disadvantage here is that
in the case of more complex search tasks, the logical
machinery is disregarded (cf. Gaag, A.; Entwicklung einer
Ontologie zur funktionsorientierten Ldsungssuche in der
Produktentwicklung; Verlag Dr. Hut; 2010, ISBN 978-3-
86853-731-4).

[0012] Methods are known for integrating semantic data
processing in a device, in particular in a field device of
automation technology. A generic description language
scheme is used to define a semantic depot as a starting point.
This description language scheme is enriched with contents
of an ontology for the semantic representation of functioning
of the device. Classes and/or subclasses of the ontology are
taken from the ontology together with at least one property
assigned to the classes and/or subclasses, converted into a
corresponding schema declaration and finally this schema
declaration is inserted into the description language schema.
Then, one or more grammars are generated from the descrip-
tion language scheme, preferably grammars according to the

US 2020/0242150 Al

standardized data format Efficient XML Interchange, which
are integrated in the device. A particular advantage of the
method lies in the significantly more compact semantic data
processing and data transmission. Hereby it is disadvanta-
geous to disregard the logical features of the semantic data
processing achieved and the associated ontology role (cf.
WO2016110356A1).

[0013] Methods are known which give a user the oppor-
tunity to create databases and similar applications from
imported ontologies. These databases can be configured
specifically and come with error detection rules. The search
in these databases is based on “meanings” instead of specific
words. Ontology management guarantees consistent data
integration, maintenance and flexibility, and also enables
easy communication between multiple databases. Only the
relevant ontology parts are considered for a specific appli-
cation (sub-model). To ensure efficiency, the sub-model is
then translated into an object-oriented, API-supporting Java
application. The disadvantage is that no consistency or
completeness criteria of the imported ontologies can be
adopted and/or enforced (cf. U.S. Pat. No. 6,640,231).
[0014] Methods are known in which an ontology-related
query is used to generate synonyms of words in database
applications that could find relevant data records in addition
to those used in the database queries. The disadvantage is
that this search becomes even more complex with logically
complex database queries (cf. U.S. Pat. No. 8,135,730).
[0015] Methods are known in which pairs of similar terms
that exist in an OWL document are stored in a relational
database and then used in database queries that establish
semantic relationships between the two terms. It is disad-
vantageous that these methods cannot influence logically
complex database queries (cf. U.S. Pat. No. 7,328,209).
[0016] General methods for handling constraints program-
ming in the context of continuous or discrete variables for
modeling mathematical or algorithmic problems are known
(cf. DE4411514A1 and U.S. Pat. No. 5,216,593). The dis-
advantage is that these methods are not suitable for general
database concepts.

[0017] Methods are known in which the most important
referential integrity constraints are set in advance when
creating an SQL execution plan (cf. U.S. Pat. No. 5,386,
557). The disadvantage is that user-specific constraints are
no longer possible. To ensure this, U.S. Pat. No. 5,488,722
discloses that a custom database restriction method depends
on the likelihood of a consistency break. After that, the
constraints that are probably not met are applied first. It is
disadvantageous that this method is not generally applicable,
since the establishment of a suitable hierarchy for the
application priority of a restriction application requires the
result of a database query, so that there are always non-
ranked constraints when evaluating database queries.
[0018] In order to increase the efficiency of the query
procedures, methods are known in which various predicates
within a logical program are assigned a certain order rank
(cf. EP0545090A2). Here, the assignment of the logical
predicates affects the level of the term system, but not the
logical deduction procedure (SLD resolution).

[0019] Methods are known for checking conditions for
large amounts of data in a database (cf. EP0726537A1;
Hirao, T.: Extension of the semantic processing model for
relational databases, in: IBM Systems Journal, Volume 29,
No. 4, 1990; p. 539 to 550 and Lippert, K.: Heterogene
Kooperation, in: ix Multiuser Multitasking Magazin 7/1994,

Jul. 30, 2020

p. 140-147). The procedures specified therein are procedural
and therefore have no logical-declarative form.

[0020] Methods according to DE19725965C2 are known
which deal with general constraints of the extended rela-
tional database concept at the deductive catalog level. It is
disadvantageous that the expansion of the logical theory can
be very large, that is, exponential in the length of the logical
formulas used.

[0021] Methods according to DE102015013593A1 are
known in which the general restriction handling in extended
relational database concepts is carried out in such a way that
logical completeness methods at the catalog level can be
used efficiently (i.e., not exponentially) in order to enable a
maximum execution speed of logical queries. It is disad-
vantageous that term-related query processing is not dealt
with explicitly. The possibility of using complete induction
processes for the overall system is ignored. In addition,
according to DE102015013593A1 no methods are specified
with which the solutions of a set of CNF formulas can be
counted efficiently. In addition, no syllogistic-based deduc-
tion applies. The answers of the system described in
DE102015013593A1 lack a logical, natural explanatory
component.

[0022] No methods are known with which a logically
complete, efficient, ontological term system can be created
at the catalog level of a relational database system, which
enables the deduction and the complete induction in its most
general form to the extent that logical (rational) explanations
in a natural language of all system reactions can be achieved.
[0023] The Logical Completion

[0024] The rule sets occurring in a logical system must
meet correctness and completeness criteria. In the context of
this invention, it is said to be “complete” if axioms and rules
of deduction explicitly derive everything that can be
deduced.

[0025] In (Bancilhon, F.; Maier, D.; Sagiv, Y.; Ullman, J
D: Magic sets and other strange ways to implement logic
programs, Proc. ACM SIGMOD-SIGACT Symp. Of prin-
ciples of database systems, Cambridge (Mass.), 1986),
(Bayer, R.: Query Evaluation and Recursion in Deductive
Database Systems, Manuscript, March 1985) or (Lozinskii,
E L: Evaluation queries in deductive databases by generat-
ing, Proc. Int. Joint Conference on Al, 1: 173-177, 1985)
there are alternative methods of completion.

[0026] These either concern the inference process itself,
i.e., the way in which the rules are applied or the facts of the
database relevant to the request. One method that deals with
the inference process itself is the so-called semi-naive
completion (cf. Bancilhon, F.; Ramakrishnan, R.: An Ama-
teur’s Introduction to Recursive Query Processing Strate-
gies, Proc. Of the ACM SIGMOD-SIGACT Conference,
Washington D.C., May 1986).

[0027] This tries to avoid the unnecessary repetition of
generation steps by only using the incrementally generated
facts, i.e. the facts that emerged in the last iteration are taken
into account (cf. Chang, C L; Gallaire, H.; Minker, J.;
Nicholas, M.: On the evaluation of queries containing
derived relations in relational databases, Advances in data-
base theory, Vol. I, 1981, or Marq-Puchen; Gallausiaux, M.;
Jomien: Interfacing Prolog and Relational Database Man-
agement Systems, New applications of databases, Gardavin
and Gelaube eds. Academic Press, London, 1984).

[0028] The assumption AR; is that AR,=(R,UF(R,_,UAR,_
1))-R, for every relation R, (here the incremental change of

US 2020/0242150 Al

R; and F(R,) is the functional expression that is deduced
from the body of a rule). In general, one cannot simply
calculate AR; as a function of AR;_,. In the case of linear
recursive rules, however, this is possible because F(R,_
1UAR,_)=F(R,_,)UF(AR,_)=R,UF(AR,_,).
[0029] As long as one can assume that the rules are
linear-recursive, semi-naive completion is an eflicient
method. However, if the flexibility is expanded and non-
linear recursions are allowed, this method is no longer
efficient (the early realizations of semi-naive approaches are
not valid for this type of recursion). Furthermore, the
exponential effort is only reduced by reducing the number of
facts of the one pattern relevant for the last deduction step.
Inalink A,"A,"..."S" ... A, where S corresponds to this
pattern, the facts that unify S are taken into account, but
links between the A, must always be established again. It has
been found that creating the AND operations is the most
complex step in the completion procedure. The so-called
APEX procedure (cf. Lozinskii, E L: Evaluation queries in
deductive databases by generating, Proc. Int. Joint Confer-
ence on Al, 1: 173-177, 1985) is a procedure of a different
kind. First, those for a definite query clause W (Target)
relevant facts of a database are generated, only then to start
the completion process. The relevant facts are calculated
using so-called control system graphs. These contain all the
logical links between rules of the database.
[0030] They are started with coupling a query generation
process which, in the case of important AND operations,
generates further queries W1?, W27 etc. The generation
takes place through sideway information passing (SIP)
between the query or queries and the facts of the respective
link(s). Another method of this class is QSQ (cf. Vieille, L.;
Recursive axioms in deductive databases: The Query-Sub-
query approach, Proc. First Int. Conf. On expert database
systems, Kerschlag ed., Charlston, 1986). As in APEX,
database rules are used for the generation of new queries.
However, as in PROLOG, the relevant facts are searched for
linearly and in depth using a backward chaining procedure.
In the case of recursive predicates, the queries are generated
using SIP using the facts already found.
[0031] The main difference between APEX and QSQ on
the one hand and semi-naive completion on the other hand
is that the solution of semi-naive completion deals with the
general and principal problem of inferring basic facts,
whereas the other two methods only try to optimize the usual
inference mechanisms by taking the relevant facts into
account.
[0032] Magic Sets (cf. Beeri, C.; Ramakrishnan; On the
power of magic, Proc. Sixth ACM SIGMOD-SIGACT
Symp. On principles of database systems, San Diego, Calif.,
March 1987) is a modification of QSQ, which the adds
variable bindings in the form of new “magic” rules to a
program or links them to the right side of a clause as
constraints. Starting with the target clause, a lot of new
predicates are generated. SIP succeeds in forwarding these
adornments. The result is a new, modified version of the first
program, which in some cases is more efficient. For
example, the program:

[0033] anc(X,Y)<par(X,Y).

[0034] anc(X,Y)<—anc(X,Z) par(Z,Y).
and the query q(X)<—anc(a,X).
the new “magic” program:

[0035] magic(a).

[0036] q(X)<—anc(a,X).

Jul. 30, 2020

[0037] anc(X,Y)<par(X, Y).
[0038] anc(X,Y)<magic(X) anc(X, Z) par(Z, Y).
[0039] magic(Z)«<—magic(X) anc(X,Z).

[0040] The new magic predicate represents a restriction of

the permissible substitutions. It systematically connects the
program constants with each other.

[0041] Practical Considerations the Nature of a Logical
Variable
[0042] The basic problem with constraint handling is to

reduce the effort involved in applying a set of constraints.
Solution approaches amount to generating instances of these
rules before an adequate application of the constraints is
activated. The fact that many solution approaches achieve a
high degree of efliciency through variable instantiation calls
for a fundamental discussion about the importance of a
variable in the closed world of a deductive database and an
RD model. The usual meaning of a variable in mathematical
logic (and thus in logical programming) boils down to
considering it as an entity detached from the domain of the
application. The link between a variable instantiation and the
domain is therefore unclear, because there are no explicit or
implicit rules in the interpretation to describe these instan-
tiation procedures. This access is therefore left to the imple-
mentation of a logical machine, which can lead to consid-
erable problems.
[0043] DE19725965C2 solves this problem by introduc-
ing the Herbal Abstraction Structure. Here, variables are
viewed as abstractions of terms and term relationships at the
catalog level. This approach makes it possible to describe
alternative completion methods that make it possible to
move from a standard Herbrand interpretation to a “more
complete” one using any degree of abstraction. If one
reverses the “abstraction process”, i.e. if one starts with
un-instantiated clauses, the Herbal Abstraction Structure
enables procedures that can split clauses of a logical pro-
gram into a number of “more instanced” clauses. This in turn
leads to the increase in efficiency described there (lineariza-
tion). However, the method formalized in
[0044] DE19725965C2 (Alg. 2) does not specify a method
for how the instantiation of the rules could be optimized.
This could be achieved in a variety of ways in a Herbal
Abstraction Structure. In addition, the main weakness of
using the Herbal Abstraction Structure is that in the worst
case it represents an exponential search space.
[0045] The method presented in DE102015013593A1,
however, leads to complete evaluation methods depending
on a new representation of variables as parts of the classic
truth table, also called pattern strings or pattern trees. In
contrast to the state-of-the-art resolution methods, these lead
to small search spaces in which linear processing times of
inputs can be realized. Here, the term “inputs” always means
instantiations of logical formulas. A procedure is used to
generate the extension that resolves model trees instead of
clauses.
[0046] In this context, two types of resolution procedures
for formulas/clauses (also known as Solvers) are known:
complete and incomplete. A Solver is called complete if it
can both determine that a formula can be fulfilled and that
it cannot be fulfilled. Not all formulas that can occur in a
Solver formula set fall into the same category. In practice, a
distinction is made between three categories:

[0047] Random: formulas that are generated randomly

according to a scheme called “fixed clause length

US 2020/0242150 Al

model” (one only specifies the number of variables and
clauses and how long a clause should be, the rest is
generated randomly)

[0048] Crafted: formulas derived from difficult combi-
natorial problems such as graph coloring

[0049] Application: formulas that are derived from
applications in reality (e.g., circuit verification)

[0050] Not all known solver paradigms cope equally well
with all formula categories. A distinction is made between
four types of solvers, which are dealt with in
DE102015013593A1. All four solver methods can be char-
acterized by the following features and are therefore sig-
nificantly different from DE102015013593A1 and from the
method according to the invention presented below:

[0051] 1. They are an example of the application of
Tarski’s semantic concept of truth regarding formulas
in mathematical logic. This term basically prescribes
that variables exist separately from their meanings or
values. These meanings are replaced in the formulas so
that they are fulfilled. Thus, variables (and their asso-
ciated literals) are only viewed as containers that do not
allow structural information about the data stored in
them to be derived or used.

[0052] 2. A by-product of this view is that algorithmic
methods are forced to test different variable evaluations
before they find a valid one. The term variable evalu-
ation is therefore an integral part of this procedure.

[0053] 3. Information from the specific mathematical-
logical formula, which relates to the concatenation of
used variables (literals) and their mutual interactions, is
not used or is used only inadequately (usually in the
form of heuristics) in order to find the/a valid evalua-
tion.

[0054] 4. All methods avoid the construction of the
entire combinatorial space, since this construction is
exponential with regard to the number of variables.
Since the methods use variable evaluations iteratively,
only a part of the space is constructed in each iteration,
the formula is then evaluated and the next iteration is
started, etc.

[0055] 5. Because the methods usually do not use
general heuristics, their performance strongly depends
on the type of formula (Tab. 1). “Good”, “bad” and
“neutral” are hereby rough indicators of the expected
performance of a method in relation to a given type of
formula. “SAT/UNSAT” stands for “satisfiable” or
“unsatisfiable”:

TABLE 1

Category CDCL Look-ahead Message-passing SLS
Random SAT bad neutral good good
Random UNSAT bad good bad bad
Crafted SAT good neutral bad neutral
Crafted UNSAT neutral neutral bad bad
Application SAT good bad bad bad
Application UNSAT neutral bad bad bad

[0056] Ultimately, a solver method is known that corre-
sponds to the classic truth table method. It differs from the
methods described in DE102015013593A1 as follows:
[0057] 1. Part of the method is the construction of the
entire exponential space of all combinations of the
variable values. After this space has been constructed,

Jul. 30, 2020

one can efficiently determine whether a particular
evaluation of variables for the respective formula
results in “true” or not.

[0058] 2. In contrast to all other methods, finding a
solution does not include trying variable-values in the
original formula, but the simple search in the generated
space, i.e., in the truth table. This makes it possible to
find the truth value of the instantiated formula without
making use of the classic, logical operators (AND, OR,
NOT), since the full extension of these operators,
applied to the logical values “true” and “false”, is
material.

[0059] 3. The number of variable evaluations that one
has to go through until a productive value is found is
exponential in the worst case. This potential exponen-
tiality is the main disadvantage.

[0060] 4. Because no assumptions are made about the
formulas, the performance of the process is indepen-
dent of the type of formula.

OBIJECTIVE OF THE INVENTION

[0061] The objective of this invention, while maintaining
the strictest logical conditions, is to optimize relational
database systems in their most general concept, by means of
a logically complete, ontological meta-level, which allows
deductive as well as inductive reasoning in their logical
query methods so that the response procedure experiences
linear efficiency in terms of speed and storage requirements.

NATURE OF THE INVENTION

[0062] The invention is based on the objective of creating
a method of the type mentioned at the outset which opti-
mizes relational database systems in their query methods in
such a way, that the response procedure experiences an
increase in efficiency with regard to the speed and the
memory requirement without having to give up logical
conditions. This is achieved by introducing a logically
complete and at the same time efficient ontological level,
which allows application-specific constraints to be derived
and/or evaluated deductively and inductively. This objective
is achieved with process steps as specified in claims 1-13.

Example of Accomplishment

Extension of the RDS Through the Concept of a Logically
Complete, Efficient, Ontological Term System in the
Catalog

[0063] The central method of this invention is based on the
idea of either explicitly defining all the data and rules
necessary for the terminological, logical and application-
specific control or making them available in advance in the
catalog by means of complete induction. As a result, not only
is the constraint treatment dealt with more efficiently, but
also some calculation requirements that are not possible in
common relational systems. Consistency properties of data-
bases are only logical in nature and therefore meta problems.
The basic assumption of this invention is that the ontological
term system of a database application remains sufficiently
constant. We call this condition below: closed ontology. This
should not be confused with the logical “closed world
assumption”, which in the context of logical systems
expresses the fact that facts that are not explicitly stored in

US 2020/0242150 Al

the database are considered “wrong”. The following
example explains this procedure:
[0064] Be given a used printing database. This contains
the tables “Machine”, “Company” and “Numbering Unit” as
shown in (FIG. 1). The following describes possible condi-
tions that are not easy to handle in conventional relational
systems and that claim parts of the entire system shown here:
[0065] 1. Among other things, the table “Machine” has
the fields “Machine type” and “Printing group”. These
are of particular interest because their combination
models important constraints known in the printing
industry. E.g., a Polar machine cannot belong to the
group of 5-color printing machines, because the type
“Polar” represents cutting machines. Similarly, a
Heidelberg-Tiegel never has more than 2 inking units,
so that the combination (type="“Tiegel”, group="3 col-
ors”) corresponds to no logic. We call such factual
constraints of the term system: Type-1-Constraints
[0066] 2. Machines cannot have more than 5 numbering
units. This condition can only be implemented by
programming (usually: stored procedures), since nei-
ther entity nor table diagrams are able to express
conditions via cardinalities of the relationships, except
by “many” and “one”. We call general conditions that
have to do with cardinalities of the relations in the
relational data model: Type-2-Constraints
[0067] 3. In the printing industry, machines are occa-
sionally transported to and from different physical
locations. Companies that intend to keep transport costs
to a minimum therefore always need, among other
things, calculations of the best transport routes. We call
these types of calculation-intensive tasks that can be
represented using general Boolean functions that can be
expressed in CNF: Type-3-Constraints
[0068] 4. Sometimes it is necessary to know the factory
standard configuration of a machine type in order to
carry out a comparison with the used machine of the
same type (e.g., whether the standard configuration is
with or without a numbering unit in the factory). This
request is related to both manufacturer specifications in
the term system and the current used machine database.
We call such constraints: Type-4-Constraints
[0069] 5. All inquiries that are exclusively related to the
database are usually handled with common SQL com-
ponents. This includes, for example: “Which compa-
nies currently supply Tiegel machines?”. We call this
type of constraint: Type-5-Constraints
[0070] 6. Inquiries such as: “Which parts are supplied
with a Tiegel machine?” And “Which parts are supplied
by a particular company with a Tiegel machine?” Are
Type-1 and Type-4 constraints examples that are used
for their execution require the calculation of the tran-
sitive envelope of the respective relationships. Stored
procedures are used in common relational database
contexts because SQL does not allow loops by default.
We name queries that cannot be solved using SQL
alone: Type-6-Constraints
[0071] 7. Derivation of formulas of the form: “All
machines from company X are always completely
overhauled and delivered with care” or “There are only
a few spare parts that are compatible with a numbering
system” are only possible if the entire data set and/or
facts of the term system is taken into account. We call
these: Type-7-Constraints

Jul. 30, 2020

[0072] The following table (Tab. 2) shows the order of
constraint types for different system components.

[0073] The descriptions and definitions following in Table
2 explain the functionalities according to the invention of the
various components of the overall system with reference to
FIG. 1.

TABLE 2
Con- System-
straint component Comment
Type-1, CDC, DTC, Constraints related to term systems and relations
Type-2 RRC, are given in CDC, defined in CNF form, and
record- evaluated by means of DTC. They are used in
validation RRC for the generation of intelligent answers.
Furthermore, they affect the customary record
validation component.
Type-3 CDC, DTC, General Boolean functions are defined in

SCP, RRC CDC in CNF form. Solver method 1 in DTC
converts to BDD (Binary Decision Diagram),
whose information are made available to
RRC. SCP provides for the number of different
solution alternatives
CDC, DTC, Constraints that have to do with both the
OBC, TRC, database and the term system or those that are
DDC, LRC only database-related can be handled in two
ways: either one first defines them in CNF
form in CDC, then they are evaluated using
DTC, or: selected records are in TRC initially
translated into categorical statements, then
used for deduction by means of DDC. As
DDC allows recursion, this also covers Type
6 constraints. LRC provides that they are
represented in the natural language.
IDC, DDC, Database and term system provide a finite
LRC number of field/fact combinations for which
the creation of complete combinatorial tables
is possible. Rules can then be derived by
means of complete induction (Method 9)
and correspond to the “all” or “existence”-
quantified formulas in Type 7.

Type-4,
Type-5,
Type-6

Type 7

[0074] Definition 1: Given the set B of all terms in an
application to which all-quantified, existential, negated and
indefinite terms, i.e., variables, include: A logical conclusion
is called syllogism if two premises (prerequisites), called
upper- and lower sentences, lead to a conclusion. In a
categorical syllogism (also called assertory syllogism),
premises and conclusions are categorical judgments, i.e.,
statements in which a term from B, the subject, another term
from B, the predicate, is assigned or denied in a certain way.

[0075] Definition 2: Let kSyl be the set of all known, valid
categorical syllogisms and hSyl be the set of all known,
valid hypothetical syllogisms of the form: From (P F ()

and (QF R) one derives (P F R), where P, Q, R are
categorical sentences and ‘I > are syntactic derivation rela-
tions, then categorical sentence s is called the logical con-
sequence of the categorical sentence set S (S—g, s) ifs
results from Syl=kSylUhSyl using Syllogisms. We call the
list of deduction steps that lead to a sentence s from a
sentence set S using rules from Syl: Derivation of s from S
(SA,). If s contains no variables, it is called a fact. If SA, is
empty, it is called an axiom.

[0076] Definition 3: An ontology Ont=(B,R) is a tuple in
which B is a set of all terms of an application and R is a set
of all intended n-ary relationships between these terms.
Alternatively, instead of R one can use the set of all

US 2020/0242150 Al

form:
possible

categorical sentences S of the
<Term,>is<Property >of<Relation,> This is
because:

Vr €R, Vb, € R: 1(by,bs,..b,,) iff {
s,=b,_is_property,_of_r,
s,=b,_is_property,_of_r,

S;=b;_is_property; of r.
¥

[0077] The sentence s, is called the descriptive sentence of
the relationship r. Descriptive sentences can only be facts.
[0078] Definition 4: An ontology Ont=(B,S), S set of all
description sets of the relationships between terms in B, can
also be represented in the form of a directed graph with
marked nodes: A directed graph or digraph with node
markings G=(V,E,M) consists of:

[0079] A set V of nodes
[0080] A set of ordered pairs of nodes ECVxV of edges
[0081] A set M of marks on the edges

[0082] An ontology is called consistent if:

[0083] the equivalent directed graph G is acyclic
[0084] Vs,,5,E8, s,,8,: Axiom: s;=-s,
[0085] Definition 5: A consistent ontology Ont=(B,S) is

called complete if Vs&S, s follows logically from the
axioms: SA,. Ont is called closed if the set B has a fixed,
constant cardinality. This simple concept of completeness is
possible because the set Syl contains known logically com-
plete subsets of derivation methods (cf. Moss, L S; Com-
pleteness Theorems for Syllogistic Fragments, in F. Hamm
and S. Kepser (eds.) Logics for Linguistic Structures, Mou-
ton de Gruyter, 2008, 143-173). The correctness of the set
Syl is also known and is assumed here.
[0086] Definition 6: In the consistent ontology Ont=(B,S),
constraints of the form:
(5, & s, & 55 ...58,)>c,
where s;,s,, . . . s,,cES, the characters &: “and” and ‘>
mean material implication, called categorical constraints.
The premises: s,,s,, . . . s,, are called categorical conjunc-
tions. We call terms that are used in categorical conjunc-
tions: decision terms. The term c is called: Conclusion.
[0087] Definition 7: A grammar is a 4-Tuple
G=(V,, V.PS) where:
[0088] 1. V, is a finite, non-empty set, the set of
non-terminal characters,
[0089] 2. V., is a finite, non-empty set, the set of
terminal characters,
[0090] 3. P is a finite subset of V*xV*, the set of
productions or rules,
[0091] 4. SEV,, is the starting signal.
[0092] A Diacritics-Grammar (DiaG) is a grammar that
allows terminal characters with diacritics from V. We call
terminal and non-terminal signs and productions that allow
diacritics: dia-terminal/non-terminal and DiaProduction.

[0093] Example of a grammar for sentences in the English
language:

[0094] G=(V,,V5BS)

[0095] V,={noun phrase, verb phrase, proper name,

article, noun, verb}

[0096] V,={Susanne,cat,horse,hay,book,the,hunts,eats,
reads}

[0097] P={(sentence->nominal phrase verb phrase.),

[0098] (Noun phrase->proper namelarticle noun),

Jul. 30, 2020

[0099] (Verb phrase->verblverb noun phrase),
[0100] (Proper name->Susanne),
[0101] (Noun->catlhorselhaylbook),
[0102] (Article->the),
[0103] (Verb->huntsleatslreads)}.
[0104] S=sentence
[0105] Example of a DiaG for the Arabic language:

[0106] G=(VN, VT, P, S)

[0107] V,~={noun phrase, verb phrase, proper name,
noun, verb}

[0108] VT:{i—ls, [T PR BT T S R S U I
[0109] [all words/word patterns in the Arabic diction-

ary]}

[0110] P={(sentence->nominal phrase verb phrase.),
[0111] (Nominal phrase->statement “” noun),
[0112] (Verb phrase->verbl“” noun verb),

[0113] (Noun->certainlindefinite),

[0114] (Determined->AlNounPattern|Geni-
tivellproper name),

[0115] (Proper name->{ .. . all known names . . . })

[0116] (Genitive->*" certain “” indefinite|

b2l

indefinite “” indefinite)
[0117] (AlNounPattern->NounPattern “J'”)
[0118] (Noun pattern->{ . . . all noun patterns in the
dictionary . . . })
[0119] (Verb->{ . .. all verb patterns in the lexicon .
P
[0120] (Statement->Determined|Undefined|Verb
phrase)}.
[0121] S=sentence
[0122] 1. CDC The Constraints Definition Component
consists of a simple text editor, in which one defines CNF
formula sets.
[0123] 2. ODC Like CDC, the Ontology Description
Component can consist of a text editor in which categorical
description sentences and/or constraints can be defined, or a
graph editor in which terms and their relationships can be
expressed in the form of nodes and edges.
[0124] 3. DTC The Decision Tree Component is the
central unit in which one evaluates Boolean functions f
expressed in CNF. The result is a decision tree (BDD) that
is equivalent to the truth table off. Method 1 is the central
method in this component and uses the pattern property of
the logical variables described in DE102015013593A1 in
the following way:

[0125] Method 1:
[0126] Input: CNF clause set S
[0127] Output: BDD
[0128] Steps:
[0129] 1. Use Method 2 to rename the formula set S to

an equivalent S'. This renaming takes into account
sample lengths in the form described in Method 2.
[0130] 2. Select literal X of the first clause CE S' for the
instantiation. X is the literal with the least index.
[0131] 3. Apply the evaluations: {X=TRUE} then
{X=False} to S'. This application results in left and
right clause sets S, S,.
[0132] 4. If either S, or S, becomes TRUE or False,
output TRUE/False nodes for the respective clause set.
[0133] 5. If neither S, nor S, are found in a container
LCS (list of already processed clause sets): Initiate a
recursive call first with S,, then with S,. This results in

US 2020/0242150 Al

a left (leftRes) and a right (rightRes) result. If not:
Initiate a recursive call with only the clause set that was
not found in LCS. Return the found BDD for the other.

[0134] 6. The end result of the resolution of clause set
S' is a node with left child leftRes and right child
rightRes.
[0135] Method 2:
[0136] Input: CNF clause set S
[0137] Output: CNF clause set S' that meets the following
conditions:
[0138] 1.V1,L,1;, ... 1, EC of S" 1, appears before 1in

C, if i<j, i.e., indexes of the literals are sorted in

ascending order within the S' clauses.

[0139] 2. S'is sorted according to in ascending order,
taking negation into account.

[0140] 3. Formally: Vij: If i<j, then L,EC appears
before L,ED in §', where L, is head literal (i.e., first
literal) of C and L, head literal of D.

[0141] 4. VXELIT(S"), LIT(S") is the set of all literals in
S, VCeS":

[0142] Ifx&LEFT (x, C) then VYELEFT(x,C): x>y. LEFT
(x,C) is a function that returns all variable indices that exist
before the variable x from clause C in the string represen-
tation of the formula set S'. (In other words, this condition
stipulates that all new indices that appear in a clause for the
first time must be larger than all those already used in S').

[0143] 5. S'is a set, i.e., clauses only appear once in it.

[0144] Steps:

[0145] 1. current set=Method3(S)

[0146] 2. while [current set is not sorted as in condition
b)]
[0147]
[0148]

[0149]

[0150]

[0151]
[0152]
[0153]
[0154] Steps:

[0155] 1. Number clauses in S in increasing order (start
with 0).

[0156] 2. Set up a table with rows of literals in S and
columns with clauses.

[0157] 3. For each clause C;:

[0158] a) Sort literals in C, in increasing order so that
those that have not yet been renamed and appear in
a larger number of clauses appear first.

[0159] b) For all literals in C,: Create a new row and
write down TRUE or False values, depending on
whether the literal appears in the column clause or
not.

[0160] 4. Rename all literal indexes in increasing order
in the table. Start with 0.

[0161] 5. Construct all clauses of S using the new
names/indices. The resulting set of clauses is S'.

[0162] 6. Return S'.

[0163] Example: If S={{0.5} {0.2} {1.3} {1.4} {2,3}},
the table in point 2 looks like this:

a) sort CurrentSet according to condition b)
b) CurrentSet=Method3(CurrentSet)

3. S'=CurrentSet

4. Return S'

Method 3:

Input: CNF clause set S

Output: CNF clause set S'

Cq C, C, Cy Cy
0 TRUE TRUE False False False
5 TRUE False False False False

Jul. 30, 2020

-continued
Co c C, Cy Cy
2 TFalse TRUE False False TRUE
1 False False TRUE TRUE False
3 False False TRUE False TRUE
4 False False False TRUE False

[0164] According to point 4:

Co C, C, C, C,

0 TRUE TRUE False False False

1 TRUE False False False False

2 False TRUE False False TRUE

3 False False TRUE TRUE False

4 Talse False TRUE False TRUE

5 False False False TRUE False
[0165] The new set of clauses: S'={{0.1} {0.2} {3.4}

{3.5} {2.4}}. This set does not meet all of the conditions in
Method 2 and requires a new ordering and renaming loop.
In this new loop the clause set is: S"={{0.1} {0.2} {2.4}
{34} {3.5}} for S"={{0.1} {0.2} {2, 3} {3.4} {4,5}}
reformed. FIG. 2 shows an example execution of Method 1
on the CNF clause set: S={{0,1} {0,2} {1,3} {2,3} {3,4}}.
The above Method 1 sets up the BDD for S, but cannot
convey any information about the number of possible solu-
tions. The following method fills this gap.

[0166] Method 4:

[0167] Input: BDD for CNF clause set S

[0168] Output: number of solutions

[0169] Steps: 1. numberedBDD=number nodes and edges

in the BDD starting with 0 (Method 5)
[0170] 2. Set numberSolutions for nodes n,=0, number-
Solutions for all edges of the first BDD level=1

[0171] 3. For all levels i in numberedBDD
[0172] a) For all edges e,, j is the index of the edge
in plane i:
[0173] i. Set numberSolutions for

e,~numberSolutions of the parent node
[0174] b) For all nodes n,,, k is the index of the node
in level i:
[0175] i. If n,, TRUE (flower) is:
[017(2)'\; numberSolutions from n,=Ze *2
N1
[0177] x is the index of an edge that leads to n,;,
e, numberSolutions of such an edge, L, edge
plane of x (given with: L =L +1,
[0178] S, parent node of e), N number of vari-
ables in S
[0179] ii. else: numberSolutions from n,=>e *2~
Le
[0180] 4. Return numberSolutions=2Tnd, Tnd is TRUE
node (flower)

—Lz)

[0181] Method 5:
[0182] Input: BDD for CNF clause set S
[0183] Output: BDD with numbered nodes, edges and
levels
[0184] Steps:
[0185] 1. Run the BDD in a recursive, depth-first man-

ner. Number nodes and edges and create a linear,
topological order. A topological order is basically an
inequality that can be created linearly in the following

US 2020/0242150 Al

way: For every two nodes n,, n,, children of n: set the
inequality n<n,<n, and add it, recursively in a depth-
first Way until the final inequality. The inequality is
supplemented by recursively placing children of node
n, before children of node

[0186] 2. For all ueV (V node set of the BDD):
[0187] dist(u)=
[0188] dist(s)=0, s is root
[0189] 3. For all u€V, in the linearized order:
[0190] dist(u)=Dist(u)
[0191] L =Idist(u)l
[0192] Dist:
[0193] Input: uEV, BDD=(V,E), V node set, E edge set
[0194] Output: Integer representing the distance between
u and the root
[0195] Note: 1(u,v,,) is the length of the edge from u to v,
(always: <=17).
[0196] Steps:
[0197] for all edges v,,v,, ...V, EV such that: (u,v,)EE:
Dist (u) =
min {
[Dist (vy) + l(u, v)], ...
[Dist (v,,) + 1(u, v,,)]
[0198] FIG. 3 shows an execution of Method 5 on the

BDD created for the clause set S={{0,1} {0,2} {0,4}} by
means of Method 1. The following example sequence of
operations shows the application of Method 4 to S:

[0199] a) Level-0: n,=0

[0200] b) Level-1: e,=1, e,=1, n—e *2-Le5=1%21-1=]

[0201] ¢) Level-2: es&ny=1, ey,=n,=1, ns—es*2""
re6=1%2272=]

[0202] d) Level-3: e,=n,~=1, e;n,=1, n,=e,*2""

Le7=1%237141%2373=5
[0203] e) Level-4: e,=n,=5, e,=n,=5, n,=(e, *2*°")
#QNTI=(5#2%*)27*=10, ny=e,*2*=5
[0204] ©) Level-5: e,=n,=5, e,=n,=5, , n,=(e,*2"~%°%)
*2N—Z:(5*25—5)*25—5:5
[0205]

[0206] 4. DDC The central method in this component
applies syllogisms of the set Syl until no new sentences can
be derived.

NumberSolutions=n,+n,=15

[0207] Method 6:
[0208] Input: Categorical sentence set S
[0209] Output: Categorical sentence set S'Steps:

[0210] 1. NewSentence=TRUE, S'=S
[0211] 2. While (NewSentence=TRUE)

[0212] For all syllogisms sy of the set Syl:
[0213] a) Apply sy to S.

[0214] b) If a new sentence s has arisen:
[0215] Set NewSentence=TRUE, S'=S'Us
[0216] else NewSentence=False

[0217] 3. Return S'

[0218] DDC contains a Translation Component (TRC),
whose task is to convert selected data records into categori-
cal statements. This is done using the following Method:

Jul. 30, 2020

Method 7:
Input: Set D of selected data records
Output: Categorical sentence set S Steps:

[0219]
[0220]
[0221]

1. For all data records r(b,,b,,...b,) € D:
i. Apply Definition 3:
Vi€ R, Vb,E R: iff{
s;=b,_is_property, of r,
s,=b,_is_property,_of r,

s;=b;_is_property; of r.

ii. Set Vi: S=SU s;
2. Return S.

[0222] 5.LRC The Language Recognition Component has
the task of converting sentences in natural language into
categorical sentences. The opposite direction is trivial. To
ensure this according to the invention, only noun sentences
are taken into account. Different languages have different
procedures in this regard, but all are based on being able to
distinguish verbs, nouns and their connections at the word
level. In Latin languages, this distinction is achieved by
experimentally using a lexicon to look at each word in a
sentence first as a verb and then as a noun. In Latin, there is
generally ambiguity at the word level (at least between verb
and noun). In Semitic languages and especially in the Arabic
language, diacritics are used for precisely this task. Differ-
ences between verb, noun and other parts of speech are
therefore recognizable at the syntactic level. This is the basic
idea of the following Method, which is specially invented
for the Arabic language. Its general definition also allows
other languages that, similar to the Arabic language, contain
syntactic structures that reflect semantic characteristics.
[0223] Method 8:
[0224] Input: Natural language sentence S, Diacritics-
Grammar G, noun category sentence assignment list z,
lexicon L
[0225] Output: Categorical sentence S'
[0226] Steps:
[0227] 1. Result structure={ }
[0228] 2. For all words w S:
[0229] i. Search w in L
[0230] ii. If w found:
[0231] Add verb/noun/determined/indefinite tags
to the
[0232] Result structure on, else
[0233] cancellation
3. Use G to find a correct derivative of S.
4. If derivation found:
a) Search result structure in z
b) If the result structure is found:
[0238] Set S'=categorical sentence, else
[0239] cancellation
[0240] 5. Return S.
[0241] The following example explains how to perform
this procedure for the Arabic language:

[0234]

[0235]
[0236]
[0237]

[0242] Given the sentence S=" ¢85

[0243] (English: “The boy’s opinion is the best opinion.”)
[0244] Let G be the Diacritics-Grammar from Definition
7

[0245] After Step 2 (always read from right to left)
[0246] ResultStructure="nour/ - indefinite noun/
* indefinite
[0247] Nowy/ - determines noun/* indefinitely”.
[0248] The derivation in FIG. 4A is then a correct deri-
vation of S from G. FIG. 4B, however, shows a failed
derivation if the diacritics are not taken into account.

US 2020/0242150 Al

[0249] Assignment list z contains the following data
records (read from right to left):

Noun sentence Category-Sentence

Noun S, (determined), noun (indefinite) S,
Noun S, (undetermined), noun
(determined) S,, noun (indefinite) S;
Noun S, (undetermined), noun
(undetermined) S,, noun

(determined) S;, noun (indefinite) S,

(Syis 8y)
(S3+8,is S))

(S4+S3is S5+ S))

[0250] Method 8 outputs S'=[(S,+S; is S,+S,)] as a cat-
egory set for the above example.
[0251] 6. IDC This invention assumes that the ontology
relevant to the application is closed. The consequence of this
is that complete induction can easily be applied to parts of
this ontology, since the combinatorics always remain con-
stant. The aim is to enable the user to discover unknown
constraints and thereby increase the coherence of the logic
of the overall system. The following basic Method for this
component is defined in such a way that it can also be used
for database records.
[0252] Method 9:
[0253] Input: set M of the selected decision terms, V set of
the values of these terms, set S of the selected conclusion
terms, V' set of their values
[0254] Output: set M' of the categorical constraints
[0255] Steps:
[0256] 1. Establish a combinatorics table T for M and its
values V
[0257] 2. For all alle s&S8, v,,v,, . .
value of s:
[0258] a) For each combinatorics theorem in T
[0259] Set a suitable v, (automatically, i.e., via recur-
sive function, or manually)
[0260] 3. For all subsets T' of M with respective values
t, ..., EWV:
[0261] a) Verify whether there is an s&S, v, is the
value of s, such that:
[0262] Each repeated appearance of the values t,, . .
., t,in T in the column s contains the value v,

. V,, V,EV'is the

[0263] b) If yes: set new constraint=(t,& . . . &t,>V,)
[0264] 4. Return all the constraints found
[0265] The following example illustrates the use of the

above method in the context of the printing application.
[0266] Let M={printing group, type, numbering unit},
V={{1-color, multi-color}, {Heidelberg, Roland}, {avail-
able, not available}}. T (steps 1. and 2.) looks like this:

Conclusion
Printing group Type Numbering unit s = Parts on discount
1-color Heidelberg available 1
1-color Heidelberg unavailable 0
1-color Roland available 0
1-color Roland unavailable 0
multicolor Heidelberg available 1
multicolor Heidelberg unavailable 1
multicolor Roland available 1
multicolor Roland unavailable 1

Jul. 30, 2020

[0267] The following subsets of M are formed in step 3:
[0268] (printing group)

[0269] (Type)

[0270] (Numbering unit)

[0271] (printing group, type)

[0272] (printing group, numbering unit)

[0273] (Type, numbering unit)

[0274] (printing group, type, numbering unit)

[0275] For (printing group) one finds the constraints:

((multicolor)>1)

[0276] There are no constraints for (type)
[0277] There are no constraints for (numbering unit)
[0278] For (printing group, type) one finds the constraints:

((1-color & Roland)>0), ((multicolor & Heidelberg)>1),
((multicolor & Roland)>1)

[0279] For (print group, numbering unit) one will find the
constraints: ((1-color & not available)>0), ((multicolor &
not available)>1), ((multicolor & available)>1)

[0280] For (type, numbering unit) one can find the con-
straints: ((Heidelberg & available)>1)

[0281] There are no constraints for (print group, type,
numbering unit)

[0282] The constraints found reflect the following rules of
the printing press industry:

[0283] 1) One gets a discount on spare parts from
multicolored Heidelberg and/or Roland printing
machines

[0284] 2) One does not get a discount for spare parts
from Roland 1-color printing machines

[0285] 3) If no numbering unit was delivered with a
1-color printing machine, whether Roland or Heidel-
berg, then there is no discount for spare parts of this
machine.

[0286] 4) One gets a discount for multi-colored
machines, regardless of whether numbering units were
delivered or not

[0287] 5) Spare parts for a Heidelberg machine whose
numbering unit has been delivered are always subject
to a discount

[0288] 7.RRC The Rational Response Component has the
task of answering queries through logic-supported reactions.
This is done on the assumption that there is a list of all
categorical constraints, which is either explicitly defined in
ODC or derived by Method 9 in the IDC.

[0289] Method 10:

[0290] Input: SQL query Qry, list of categorical con-
straints catCons

[0291] Output: Set M of all categorical constraints that
belong to the query

[0292] Steps:

[0293] 1. Execute Qry. Name the resulting table ReT.

[0294] 2. Form the set M' of all decision terms that
occur in ReT

[0295] 3. For each term b of M":
[0296] a) Search b in catCons
[0297] 1If found: add constraint to the list of results
[0298] 4. Return the list of results
[0299] As an alternative to SQL queries, categorical

records can be searched directly in the RS. Since Method 6
in the DDC guarantees, by means of completeness and unity
of the ontology, that every derivable sentence also exists in
the extension of the ontology, a simple search procedure is
sufficient for this type of query method.

[0300] Method 11:

[0301] Input: Categorical sentence s, list of all categorical
sentences S, list of all categorical constraints const

US 2020/0242150 Al

[0302] Output: List of all categorical sentences/constraints
that were involved in the derivation of s
[0303] Steps:
[0304] 1. Search s in S
[0305] 2. Search s in const
[0306] 3. If found: return SUconst, else
[0307] cancellation

DESCRIPTION OF THE DRAWINGS

[0308] The present invention may be better understood,
and its numerous features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

[0309] FIG. 1 illustrates the various components of the
overall system with ODC, DTC, CDC, IDC, DDC, LRC,
TRC, and RRC;

[0310] FIG. 2 executes an example of Method 1 on the
CNF clause set:

[0311] s={{o,1} {0,2} {1,3} {23} {3,4}} where
Method 1 sets up the BDD for S, but cannot convey any
information about the number of possible solutions;

[0312] FIG. 3 executes Method 5 on the BDD created for
the clause set

[0313] S={{0.,1} {02} {0.,4}} by means of Method 1;
[0314] FIG. 4A shows a correct derivation of S from G
according to Method 8 with input of a natural language
sentence S, Diacritics-Grammar G, noun category sentence
assignment list z, and lexicon L;

[0315] FIG. 4B provides a failed derivation if a Diacritics-
Grammar is not taken into account;

1. A method for creating an efficient, logically complete,
ontological level in the extended relational database con-
cept, characterized in that the catalog level is extended to a
logically complete and closed ontology, called a Rational
System (RS).

2. Method according to claim 1, characterized in that RS
includes, inter alia, the following components:

a) Ontology Description Component (ODC), consisting of

a graph- or logic-based editor of axioms (ontology
structure) and facts.

b) Inductive Derivative Component (IDC), whose task is
to generate combinatorics for selected parts of the
overall system, for which no explicit constraints are
known. In consequence, a complete induction proce-
dure assists in inferring such constraints.

¢) Deductive Derivative Component (DDC) that applies
syllogisms to selected parts of the overall system using
a Language Recognition Component (LRC). A Trans-
lation Component (TRC) ensures that records from the
database are rewritten into categorical statements.

d) Rational Response Component (RRC), which can
explain each response to a request made to the overall
system by means of stored constraints.

Jul. 30, 2020

3. Method according to claim 2, characterized in that
categorical constraints are derived by means of complete
induction (Method 9) in the IDC via selected parts of the
overall system.

4. Method according to claim 2, characterized in that
syllogisms and hypothetical syllogisms in the DDC are
applied to selected categorical data sets of the entire system
until no new sentences can be derived (Method 6). In
addition, DDC contains a Translation Component (TRC)
whose task is to convert selected data sets into categorical
statements (Method 7). The language Recognition Compo-
nent (LRC) of the DDC, however, has the task of converting
sentences in natural language into categorical sentences.

5. Method according to claim 2, characterized in that
inquiries are answered by logic-assisted reactions. This is
done by means of Method 10, which abstracts concepts and
the associated categorical sentences/constraints from SQL-
queries. Alternatively, a categorical sentence can be
searched directly and the associated terms/constraints found
(Method 11).

6. Method according to which a Decision Tree Compo-
nent (DTC) explicitly makes available selected CNF-form
constraints by means of SAT-solver methods (Methods 1, 2,
3) as Binary Decision Diagrams (BDDs).

7. Method according to claim 6, characterized in that
possible solutions of the CNF-formula are counted by means
of Methods 4 and 5.

8. Method according to claim 6, characterized in that the
concept of a logical variable x is based on the truth pattern
of x obtained from the truth table.

9. Method according to claim 6, characterized in that a
combinatorial space is generated with the resolution, which
does not depend on the classical variable value combinator-
ics, but on the sequence and interaction of the truth pattern
of the variables in the to be processed formula.

10. Method according to claim 6, characterized in that by
means of the combinatorial space, a canonical division of the
clause set in smaller clause sets is carried out, whose entire
final value depends on their respective truth values alone.

11. Method according to claim 6, characterized in that the
clause classification criteria of Method 2 (1-4) are met by
applying as well as both, the resolution methods described
in Methods 1 to 3 and the resulting CNF-formulas.

12. Method according to claim 6, characterized in that the
combinatorial space by use of this canonical partition is
converted to an efficient decision tree (BDD), which is
equivalent to the classical truth table, although it does not
include all the truth table combinatorics.

13. Method of using a Dia-Grammar for automatic rec-
ognition of natural language sentences. The Dia-Grammar
allows control of the sentence and/or word derivation
method by the umlauts and/or meta-symbols known from
the natural language syntax (Method 8).

* % *® 0k %

