az United States Patent
Abdelwahab

US011113281B2

US 11,113,281 B2
Sep. 7,2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

*)

1)

(22)

(65)

(1)

(52)

(58)

EFFICIENT METHOD FOR LOGICAL
COMPLETION OF A DEDUCTIVE
CATALOGUE USED FOR GENERAL
CONSTRAINTS TREATMENT IN THE
EXTENDED RELATIONAL DATABASE
CONCEPT

Applicant: Elnaserledinellah Mahmoud Elsayed
Abdelwahab, Cairo (EG)

Inventor: Elnaserledinellah Mahmoud Elsayed

Abdelwahab, Cairo (EG)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 264 days.

Appl. No.: 15/293,420

Filed: Oct. 14, 2016

Prior Publication Data
US 2017/0249359 Al Aug. 31, 2017

Int. CL
GO6N 5/04
GO6F 16/2455
GO6N 5/00
GO6F 16/2453
GO6F 16/23
U.s. Cl.
CPC ... GO6F 16/24542 (2019.01); GO6F 16/2365
(2019.01); GOGF 16/24565 (2019.01); GO6N
5/003 (2013.01); GO6N 5/047 (2013.01)
Field of Classification Search
CpC GOG6F 17/30371; GO6F 17/30463; GO6F
17/3051; GOG6F 16/2365; GOGF 16/24542;
GOG6F 16/24565; GO6N 5/047; GO6N
5/003
See application file for complete search history.

(2006.01)
(2019.01)
(2006.01)
(2019.01)
(2019.01)

B. New method:

(56) References Cited
U.S. PATENT DOCUMENTS
5,216,593 A 6/1993 Dietrich et al.
5,386,557 A 1/1995 Boykin et al.
5,488,722 A 1/1996 Potok

2013/0117323 Al1* 5/2013 Lohiya GOGF 16/2465
707/793
2013/0238545 Al* 9/2013 Fuchs ... GO06Q 10/00
706/47

OTHER PUBLICATIONS

Elnaserledinellah Mahmood Abdelwahab, Constructive Patterns of
Logical Truth, Journal Academica vol. 6(1), pp. 3-96, Feb. 15,2016
(Year: 2016).*

Elnaserledinellah Mahmood Abdelwahab, On the Dual Nature of
Logical Variables and Clause-Sets, Journal Academica vol. 6(3), pp.
202-239, Sep. 15, 2016 (Year: 2016).*

* cited by examiner

Primary Examiner — Anhtai V Tran
Assistant Examiner — Xiaoqin Hu

(57) ABSTRACT

New methods to represent variables as parts of the classical
truth table lead to complete evaluation methods that generate
a compiled, efficient version of logical expressions.

The new methods are suitable for use in, e.g., relational
database applications in which both, efficient query times as
well as logical completeness and consistency are required in
the context of general constraint treatments.

Input/output operations remain linear in the length of the
input character strings regardless of the complexity of the
logical theory.

A new processing method of formulas is described as the
basis for the efficiency increase.

In order to find a specific truth-value, pattern trees are used
representing the extension of the logical theory.

13 Claims, 24 Drawing Sheets

or not(x1) or not(x12)) etc...

Sy = (x0 or x1 or x2) and (not(x10) or not(x21) or not(x2)) and (x6 or x3 or x2) and (not(x0

¥

Transformation

v

Pattern Trees

Construction step

Pattern - Resolution

v

Result Tree

not (1) or not (1)) ¢tc...

K...y=(1 or 1 or 0 or) und (not{(}) or not (0) or not ()} and (Gor 1 or0) ... and (not (1) or

v

Linear
SH>H>

] Query to result tree l

Execution step

U.S. Patent Sep. 7, 2021 Sheet 1 of 24 US 11,113,281 B2

DDL & SDL Compiler
\ Query & DML Parser
Query & DML Compiler
Authorization & Security Query & DML Optimizer
VAN

VA

t4 1 ti=Table number i

t3

FIG. 1

U.S. Patent Sep. 7, 2021 Sheet 2 of 24 US 11,113,281 B2

SQL-S '
QL-Sequence @ 1

Semantic
Parser

Constraints
Compiler

Query-Optimization

Plan-Optimization
and
Plan-Revision

Excecute Query 5

FIG. 2

U.S. Patent Sep. 7, 2021 Sheet 3 of 24 US 11,113,281 B2

Company Machine
Name MFR
City has printin-machine Type
Country , Group
Capital

ER-Diagram
FIG. 3

U.S. Patent Sep. 7, 2021 Sheet 4 of 24 US 11,113,281 B2

SQL-Sequence

Semantic
Parser

Query
Generator

Query
Execution

-ve

Query-Optimization

Plan-Optimization
and
Plan-Revision

End Execute Query 5

FIG. 4

US 11,113,281 B2

Sheet 5 of 24

Sep. 7, 2021

U.S. Patent

Vs 'Old siokrado TON MO ‘QNV JISSE[D JO 98} -
110]J9 UOTINDIXD + (SOLIOJRUIQUIOD oY) JO) O] UONINNsuod = Axd[duioo Suissanold -

surgoew jo syndyno / anjeA-yjnay, -SoHES
R,
poyoui djrunxoadde
uonnjosoy
POYIOnE SIISLIBIY ‘
. JSVR[D)
poyeul urunng SIas(B
) Wy
A

=019 ((Z1x)30u Jo ([X)j0U IO
(Ox)30u) pue ' (7X J0 £X J0 9X) pue ((7X))ou Jo (J7X)30U J0 (QTX)30U) PUe (TX J0 [X J0 (X) = ()]

:(IND 2UOeoHOW LVSE) 198 asne[d 0} JI30] 9y} U] paje[sued) st JALL

Y =L
indino ounposepy (€ ndu
Junmj,

:(UI3)SAS [€J130] ¥ Ul S9)R[AUHIS JUNYORUI SULIN [, AIRI)IGIR) POYJOW JISSB]) *V

US 11,113,281 B2

Sheet 6 of 24

Sep. 7, 2021

U.S. Patent

85 o1 <<<<<

Jeaul|

dajs uonnoaxgg 32413 }nsai 03 AN

4

=032 ((1) you Jo (1) J0uU

o (1) j0u) pue " (J0 | Jo) pue (() jou Jo (0) jou J0 (O)jou) pun (J0 g 10 [Jo) = (Y

1], JNSOY

+

uoIjnjosay - ured

T

dajs uononIsuo)) CEEREPRIRCIET

A

UOIRULIOJSURI],

A

019 ((Z1X)304 40 ([X)j0U JO
(0x)j0uU) pue " (7X J0 £X 10 9X) pue ((7X)jou 10 ([7X)J0U 10 (§1X)j0u) pue (ZX Jo [X J0 ox) = (")

TPOJati MIN 4

U.S. Patent

Sep. 7, 2021

Sheet 7 of 24

US 11,113,281 B2

A logic pattern tree in construction for C1={x0, x2}

A0)41)=[S1]

41O 1M)=[ST7]

[S1_ST1’]

2(1(0)1(1))

e

2([S2_82’])

2(0)=[S2]

PatternOr-Split-Step

4(1)

PatternOr-Copy-Step

Division/Multiplication

l

1(0)1(1)=[S2’]

[S2_S2°]

1(0)

1(0)

PatternOr-Split-Step

1(1)

PatternOr-Copy-Step

FIG. 6

US 11,113,281 B2

Sheet 8§ of 24

Sep. 7, 2021

U.S. Patent

L™Old
(83400474
(OIODY (0D
(14
11
IXUAd aixda aixug
aaa

€=N

vy

adaox

or(Dy

agoxu

US 11,113,281 B2

Sheet 9 of 24

Sep. 7, 2021

U.S. Patent

{TiTion)8

€Xaaa

8 'Olid
(oitlzitis ((tilolly (oeltiely wnwome {ow(tivle (Tislo)8 {ols(t)8

€Xuada aixad deXuad aaixd qarxud Qaqox aaaoxu

=\

aaad

U.S. Patent Sep. 7, 2021 Sheet 10 of 24 US 11,113,281 B2

Generation of pattern tree C1’={nX0,nX1,nX3},
pattern assignment list Fig. 8, N=4

8(1)8(0)=[S1] 2(4(D)4(0))=[82]
\ / PatternOr - Split Step
[S1_S17]
8(1) 8(0)=[S1’] 4(DH4A(0)=[S2’]

N, .

PatternOr — Copy Step \

[S1°_S2’]

4 4(0)

1L

FIG. 9A

US 11,113,281 B2

Sheet 11 of 24

Sep. 7, 2021

U.S. Patent

™~

\ D8

e

—

[¢S ZS 18]

<

86 'Old

01

A

(D1

~N7

([esDs

o

Dy

[.zs (18]

[.1Ss 18]

(s

US 11,113,281 B2

Sheet 12 of 24

Sep. 7, 2021

U.S. Patent

™~

\\\\\\\\\xh‘ (1)8

[£57ZS7 18]

<

06 'Old

(0)1

A

()1

(lesh)g

L0J¥

N

97

[.zS™ ﬁmu

[.1S71S]

US 11,113,281 B2

Sheet 13 of 24

Sep. 7, 2021

U.S. Patent

([esDz

([esDz 8#\
Pl

[€S .zS .1S]

e

([eSDy

[.zS .1S]

Dy

as 'Oid

(01

IS<>D =

S<>D =

(D1

([eSDz

[€S .zS .IS]

~

v/ (Dy
y 7

\

~

€S<I>) = [€S zS 18]

(ns

US 11,113,281 B2

Sheet 14 of 24

Sep. 7, 2021

U.S. Patent

[Tsw)lzvz

.

<_—

[T-WgwAsH, 7

Vol "Old

NmEuFN

™~

=
o

-

,muim

[eSuD]Xve

HN&AE%MW&<N \\\\\\&\\\\\\\\\\\\\MHHHHV

:mi&

US 11,113,281 B2

Sheet 15 of 24

Sep. 7, 2021

U.S. Patent

W Auprpre)

fosu uAg e

TSl A

lipusislzAxmive

/

(6321779 (1AVC

~ 7

ysunizyg

a0l 'Oid

[immdse AT

—

[egu)y ™y puidg)

SO AVT

g dos

p,\\\\\\V

{ Ao

[esu0l

\l €] 100

[omudsligive

=W

£ Auppuspasy)y

fradsiogmg

TWAgTIPEY R

‘UOISIAID JO}E 50938 p PO 7| JUIAS << ESR)| "o "X <<B '] — 382

US 11,113,281 B2

Sheet 16 of 24

Sep. 7, 2021

U.S. Patent

W Augewpar)

(Zsmy Tauss e

.

[csudiRve

{oamsslghg

o0l 'Old

I

{14 m4g]

W Auipiey

/

[eswy pwAs]

{1ve Avt

~ /7

1Sz

(P

4

ANIGS 1200

3 daxs

\\\.\\\‘

(D8
v YRS OGS

13
<

> o))

Lo

L Anpopn)y

{epmdsiong

orraado Adod

TN Sgempaey

e

[74.m48]

!

I Aygempaey

[zpuisighs

{1p,mis)

/7

I

[14e0ds]

AR

03081 INOYIA

US 11,113,281 B2

Sheet 17 of 24

Sep. 7, 2021

U.S. Patent

W Saprupay

frsuey zpudg) vy

M

{zpmasigyy

eswlzae g

NI} A

(11

/

{ZsmDlANT

aot Old

—

I~ W ARBHIPIED) (ESHE) 14045

~

{14 k] e is®Xivg

\

[£Sw) ™ pwAs]

‘g das

T Ay

e

{epmAsiiong

foeudy]

[euAsliayyr

10398 A

[74,ws]

Pl

W

{puds]

[Ay

AR

FO128] RO

THOTATP J91J8 SUTTS § PO 558 = 958))

U.S. Patent Sep. 7, 2021 Sheet 18 of 24

Common Concatenation:

[...]= Intermediate node or
root, Cardinality M

O Leaf, Cardinality max. M-1

US 11,113,281 B2

FIG. 11A

US 11,113,281 B2

Sheet 19 of 24

Sep. 7, 2021

U.S. Patent

gLl 'Old

INvIA => S[oqUIS, [£J0} JO IaqunN :UONEUI)EIUOD UOWLIOD 1) JO Uoisuedxa [ed1)2.1091],
,

_ I JoAeT S[oquAS A

ttttttttttttttttt | 7 Jokey ul
s[oquiAS N

€ Jake ul
;;;;;;;;;;;;;;;;;; - S|oqUIAS A IAIAL

US 11,113,281 B2

Sheet 20 of 24

Sep. 7, 2021

U.S. Patent

0)¢ (D¢

N

{Ixu} 12520

YZl Old
(D1)1
12 (Dy wxy | [zsiok

{Ixuoxu} £STD]

{TxX‘0X} [€S1D]

SN SN

(0)T(1)T)T

O (Db (DO DY (OO

{Ixu‘gxu} {TX'ox}

puvunpned o

JounRped

€=N ‘L 814 ¥s1] yuswugisse wrdyed {{Tx‘ Ix}{xu‘oxu}{gx‘gx}}=2 Suisjosay

US 11,113,281 B2

Sheet 21 of 24

Sep. 7, 2021

U.S. Patent

azL 'old (o 01
(D1 (01 7S€D TS1D]
/ \ . [zse0] [zS1D]
(14 [zseD] eSOl
/ \A {ex} v/ %ﬂ X}
ZXIX} — — Q: SVM
frxu} Wmu mmww x| lese0TTsId]
{rxu} \)
XY _ - XX} {ZxX“ 1%} ﬁm Se0]
{ixwoxu} | [€£S€D7€STOTESIO]
{xox}
\ v/ (DT Dz
ex| €801 11 7ger] [zSIDlT
\1 X3 [ese0lz
{IXXOXUHTX0X} (€SO ¢SO}
[eS70] [£STo] (D1 DY ((Dzo)T
{Ixuoxu} {Tx‘0x} {TX1X}

US 11,113,281 B2

Sheet 22 of 24

Sep. 7, 2021

U.S. Patent

(0)T

(D1 (01

12S€Dl

/ \4 {Tx}

l€S€D TSTOl

ﬁxﬁf?

oZ1 Old

(D1

1 (D1 01

N N T

[ZS1D]

[2S€D TS10!

{zx} 1/ \ {TXHTx}

l€S€D TSID]

&mﬁxzmﬁ

[€SED €STD €S10]

{exX IXHIxuwoxuHzxox}

U, J[NSIY PUR L], UOISIIA(
{ex ixy{ixu‘oxu}{gx‘ox}}=) Suisjosoy

US 11,113,281 B2

Sheet 23 of 24

Sep. 7, 2021

U.S. Patent

aci 'oid
anij asje] onay aspgy oM os|ej
[=¢X —7X 1=CX =7X
MHNW/ \mh % 0=¢ X{ N
asyiy —— X X
[=1X \W X [=IX x“ I1X
IX IX
d/nox —0X
0X

U.S. Patent Sep. 7, 2021 Sheet 24 of 24 US 11,113,281 B2

x
o
P
[T
x
N

Classic Decision Tree
0 0

RRP|IRPIRPROOC|IO|O
RP|IRP|O|O|R|FL|O|O
R|IORP|O|R|O|r|O
O O0OIrR|IO|FRIOR
O OIR|IO|RIORK

Truth-value-finding between classical substitution in the SAT
clauses and the use of the decision tree

FIG. 12E

US 11,113,281 B2

1

EFFICIENT METHOD FOR LOGICAL
COMPLETION OF A DEDUCTIVE
CATALOGUE USED FOR GENERAL
CONSTRAINTS TREATMENT IN THE
EXTENDED RELATIONAL DATABASE
CONCEPT

TECHNICAL FIELD

The invention concerns an efficient method to logically
complete a deductive catalogue used for general constraints
treatment in the extended relational database concept.

The method, using a new representation of variables
which are part of the classical truth table, leads to complete
evaluation methods generating a compiled, efficient version
of the logical theory used to express general constraints.
This innovation allows, in contrast to known methods in
deductive databases, linear processing times of inputs which
do not involve classical AND, OR or NOT operators. Thus,
depending on this new logical completion method, the
invention leads to query procedures in the context of deduc-
tive databases, which no longer depend on the complexity of
the logical form, but on the optimal extension of the logical
theory made available in advance.

It serves to improve the query procedure in general, and
the efficiency increase in particular because the response
procedures of a relational database query, in particular in the
case of general, complex constraints involving more than
one database field, experience a maximum speed increase.

BACKGROUND ART

Known are general procedures to implement constraints
programming used to model mathematical or algorithmic
problems by means of discrete or continuous variables.
(DE4411514 Al and U.S. Pat. No. 5,216,593). Their disad-
vantage is that they are not extendible to database contexts.
Known are procedures in which the most important refer-
ential integrity constraints are generated before the SQL-
execution-plan’s activation (U.S. Pat. No. 5,386,557). Dis-
advantageous is the fact that no other user-defined
constraints are permitted. To accomplish this and provide an
efficient implementation U.S. Pat. No. 5,488,722 describes a
procedure in which different constraints have different
execution priorities depending on the possibility of failing to
fulfill them. Constraints having higher failure-possibilities
are ranked on top of the priority-list. Disadvantageous is that
there is no general way to build this list and in case of
recursive queries, which have to be used to calculate the
priorities, there are always constraints without appropriate
rank.

Known are procedures to rank predicates inside a logical
program (EP0545090A2). This optimizes the use of those
predicates and doesn’t alter, however, the inference machine
(SLD-resolution). Known are ways to check constraints-
satisfaction in huge amounts of data inside a database
(EP0726537A1; Hirao, T.: Extension of the relational data-
base semantic processing model, in: IBM Systems Journal,
Vol. 29, No. 4, 1990, p. 539-550, and Lippert, K.: Hetero-
gene Kooperation, in: ix Multiuser Multitasking Magazin
7/1994, p. 140-147). They are to be implemented as proce-
dural (non-declarative) descriptions and are cited without
reference to the formal or logical properties (i.e., soundness
and completeness) of the overall logical system. According
to DE19725965C2 methods are known which deal with
general constraints in the extended relational database con-
cept at the deductive catalog level. Disadvantageous is here

20

25

30

40

45

60

65

2

that the extension of the logical theory is very large, i.e., that
it can be exponential in the length of the used logical
formulas.

Technical Problem

Not known are methods in which general constraint
procedures are implemented in extended relational database
concepts such that logical completion methods are applied to
catalogs efficiently (i.e., not exponentially) to allow maxi-
mum execution speed of logical queries:

The Relational Database Model

(c.f. Date: An introduction to database systems, Vol. I,
Fourth Edition, Adison-Wesley, Massachusetts, 1986 and for
a complete overview: DE19725965C2).

The relational database model is a simple form of first-
order predicate calculus (PLCI). The concepts: Relation,
Domain, Attribute and interpretation have the same meaning
in the RDM as they have it in logic. The only objects in the
RDM are tuples. A tuple is a collection of attributes which
serve intensional purposes. Tuples are collected in tables
which form (through their tuples) so-called schematic con-
sistency. They are classified according to their contribution
to this consistency into base and auxiliary tables. The RDM
System is a picture of the mini-world, which is a logical
snapshot of the world to be implemented. This mini-world is
translated into RDM-terminology via semantic tools of
which ER-Diagrams are best known. An ER-diagram pro-
duces a scheme which contains the basic consistency-prop-
erties of the mini-world, i.e. relations between objects mod-
eled using cardinalities (among other methods). Key-
attributes play a central role in this schematic-consistency.
They guarantee referential integrity and therefore also nor-
mal-form properties. Referential integrity means the exis-
tence of corresponding values of base-table attributes in
auxiliary tables, vice versa.

The inference language SQL with which a query is sent to
the RDM system is a logic-based declarative language
which is not capable of providing the full functionality of a
normal programming language. It contains especially no
recursive definition facilities. General consistency proper-
ties (like transitive closure of tables) are therefore not
expressible in SQL and need external programming efforts.
Some of the efforts may be procedural and lack therefore the
clearness of form—others are declarative and have the
disadvantage of being complex and only valid in very
special modeling situations. Since RDM is based on logic it
contains the well-known classification of language-levels
into object- and meta-levels. The RDM has only two such
levels: the tuple or data-level and the catalogue. The cata-
logue usually contains all the needed important information
concerning tables and their relations, indexes and valid
execution paths. If it contains more than this (i.e., informa-
tion about organizational aspects other than those needed for
RDM-implementation), it is called a data-dictionary. A real
RDM system has the components shown in FIG. 1. Tj
(G=1 . .. n) stands for table names. Arrows symbolize data
transfer. The catalogue is used to store specifications of
database schemes (DDL-compilers) to be matched against
user-queries (using DML-parsers). In the same time it con-
tains important file descriptions to simplify DML-compile
operations and provide the possibility of translation into
appropriate machine codes. DML-optimizations use field-
descriptions and consider index and hash-functions, for
example when generating a query-execution-plan. Addition-

US 11,113,281 B2

3

ally, many heuristic optimization-decisions (like selectivity-
estimates) reside as appropriate assertions about the data-
base in the catalogue. Other functions of the catalogue
include also storing security control information and the
guarantee of translating database views into the original
database schemes.

Constraints Verification

In addition to the above mentioned key-attribute integrity,
RDS’ have the possibility to express explicitly consistency-
constraints in form of program-assertions in the catalogue.
Those assertions are usually SQL-clauses with built-in con-
sistency-verification components. The assertion,

create assertion salary

check (not exists (select * from employee A,

employee B

where A.salary>B.salary

& A.rank<=B.rank))
e.g., limits the tuples of a database to those in which the
salary of a new employee is never higher than the salary of
his chief-officer. Coupling those definitions to SQL has the
disadvantage of taking over the lack in expressive power.
There is no way to model recursive constraints as already
mentioned. The tuples in the example are required to have a
specific ranking order. This was modeled by the explicit field
“rank”. Supposing that no such ordering exists, then this
type of constraints cannot be implemented. If the database is
large enough, then defining such ranking fields becomes a
very tedious task. The only solution in such cases lies in
external procedural programming efforts, which allow the
possibility to iterate tuples and arrange them in the required
order.

In the catalogue there resides not only the definition of
those constraints, but also their way of implementation.
Actual RDM-environments provide the possibility to
describe strategies of constraints-check realizations in three
ways: transaction procedures, triggers and predicates. Trans-
action procedures are basically indivisible operations imple-
menting a specific task. They are only valid as a whole and
thus the herein specified constraints are guaranteed either to
be satisfied or not. Triggers are automatic verification pro-
cedures which are executed when special predetermined
events occur whereas predicates represent consistency cri-
teria, verified globally by the database.

Constraints Verification Methods

If large quantities of data are imported into a database the
problem of constraints activation occurs. This is because
insert- and delete-operations affect referential integrity. In
SQL the CASCADE-function guarantees the elimination of
all orphan-tuples, i.e., all tuples in auxiliary tables with
non-existent key entries in base-tables. This CASCADE-
function has to be, however, coupled to one of the above-
mentioned verification strategies. FIG. 2. shows the usual
SQL-command flow. After syntactic and semantic process-
ing (1) and (2), the optimization phase starts. The basic idea
is to eliminate as many SQL-commands as possible (c.f.
Query Graph Model and & IBM Research-Report RJ-6367,
IBM Almada, San Jose, Calif., August 1988). Plan optimi-
zation (4) completes this process by using real file organi-
zation parameters to guarantee the best possible realization.
In case that there are constraints available, the constraints
compiler (6) will generate the required machine code rep-
resenting those constraints. The present invention reforms
the command flow shown in FIG. 2 heuristically.

Some realization methods (c.f. EP0726537A1) substitute
the regular SQL-compiler which is activated when INSERT
commands are encountered with another one. The modified
compiler generates a SELECT-clause before the INSERT-

15

20

25

40

45

60

65

4

machine-sequence in which all tuples failing to satisfy the
constraints are contained. This guarantees referential integ-
rity. The here described invention substitutes the constraint
compiler with a constraints-query-generator, which is
responsible of formulating constraint-checks as logical que-
ries to the deductive database of the catalogue.

Deductive Databases

The problem of constraints expression and verification
can only be handled with sufficient generality in the context
of logical programming (LP). The fact that referential integ-
rity is only one sort of possible variable assignment of a
logical program—thus a common special case—makes it
irrelevant which type of integrity constraints are modeled
when LP is used. Deductive databases are generally
described in a declarative manner and are in the same time
sound and complete logical solutions of problems encoun-
tered in databases. A well-known deductive-database lan-
guage is DATALOG. It is a limited predicative language
without functions or negations. DATALOG is the best way
in LP to express databases. The RDM does not contain
complex objects on the tuple-level which require (or can be
compared to) function definitions. In the same time the
implementation of “negation as failure” to find a tuple in the
finite mini-world of a database, corresponds to the same
assumption in DATALOG. There, it is the guaranteed mini-
mal semantic model which makes it possible. In order to
explain the present invention correctly, we will use the
DATALOG-formalism: Formal definitions will be indexed
with the subscript Def. whereas language notations will be
marked with N.

N. 1: An intensional database (IDB) is the set of all tuples
of a database which can be deduced from an exten-
sionally existent set (EDB).

N. 2: The rule-definition language is a language which
enables the formal description of IDB.

This language must allow the possibility to express logi-
cal connections between assertions about database-objects.
Generally it must satisfy the following criteria:

A. Recursive definition of rules

B. Negation and

C. User defined functions must be allowed

Therefore, it is a reduced version of the horn-clauses-
based PROLOG. (c.f. Chang, C. L.; Lee, R. C.: Symbolic
logic and mechanical theorem proving, Academic Press,
1977 Edition, 1973 and Sterling, Leon; Ehud, Shapiro, The
Art of Prolog, MIT Press series in logic programming,
1986).

Def. 1: Literals are negative or positive assertions.

Def. 2: Horn-clauses are rules of the form: QR All

A2 .. .| An, where Q and Ai are non-negative literals.

Def. 3: A rule of the form QR A1l A2 ... | Anis called
definite, if Q and Ai are atoms (for all Ai).

One well-known rule-definition language is DATALOG
(c.f. Ullman, Jeffery D., Principles of database & knowl-
edge-base systems, Volume I&II, Computer science press,
1988). DATALOG is a language without function symbols,
which however has dialects allowing such extensions (for
example DATALOG™, DATALOG"®). The syntax of
DATALOG contains the following elements:

A. constants a,b,c,d...
B. variables XY Z ...
C. predicates RI,R2...
D. logical operators I, 1w

E. equality relations =<, > ...
F. punctuations s o

US 11,113,281 B2

5

Formulas and rules can be expressed using (recursively)
the symbols from A to F.

Def. 4: A term is either a constant or a variable.

Def. 5: An Atom is an expression of the form P(tl,

12, ...tn), where P is an n-ary predicate and ti are terms.
The set of all atoms is written A.

Def. 6: A ground-term is a term without variables.

In a rule QR A1IA2 . .. |An, Q is called a conclusion
(head) and Ai premises. Each Al is a sub-goal and the overall
conjugation is called goal (body).

Def. 7: ADATALOG-rule contains only atoms. It is called
recursive if the conclusion (or equivalent terms) is also
contained in the premises. It is called linear recursive if
it is contained only once.

Def. 8: A DATALOG-rule of the form: Q% | where Q is
a ground-term is called a fact.

Examples of DATALOG-rules are:

ancestor(x,y) !t ancestor(x,z), father (z,y). or
ancestor(x,y) R ancestor(x,y),ancestor(z,y).

The first is linearly- and the second non-linearly recursive

Def. 9: A DATALOG-pro grain is a set of DATALOG-
rules.

The semantics of DATALOG-programs is either declara-
tive (model-based) or procedural (proof-based). In what
follows the model-based variant is described.

Def. 10: An interpretation of a DATALOG-formula is a
tuple (D,PA,CA), in D is a domain, CA a function from
constants to elements of the domain. PA a function
from n-ary predicates (D n) to the set {true, false}.

Def. 11: A variable assignment IT (in a particular inter-
pretation) is a function which gives each variable in a
DATALOG-formula an element of the domain D.

Thus, an interpretation and a variable assignment deter-
mine the truth-value of a DATALOG-formula.

Def. 12: A model of a DATALOG-pro gram is an inter-
pretation in which all rules and facts have the value
“true”, i.e.:

1) For all tuples (t1 . . . tn), which are in the relation P,
P(tl . . . tn) is “true”.

2) For all rules and all variable assignments II, if
w(All . .. An) is “true” (i.e., all premises Ai of a rule are
true), the conclusion is also “true”.

A model is a set of predicate instances which contains all
the tuples of the intensional database. Since in general there
are many models of a logical program, only the minimal
model is identified with its semantics. Van Emden, Kowalski
(The semantics of predicate logic programming languages,
Journal of the ACM, October 1976) provides a proof of the
existence of such a mode.

Def. 13: The canonical, declarative semantics of a DATA-
LOG-pro gram is (only) the set of all predicate-in-
stances which can be deduced from the program. This
set is called the minimal model of the program.

This definition implies a model-generation procedure. It
simply constitutes applying the rules on the facts until no
new facts are generated. This procedure is called naive
ground-term completeness procedure and presents the focal
point of the present invention.

Logical Ground-Term Completeness

Usually rules and datasets of a logical system have to
fulfill criteria of soundness and completeness. Soundness
means that rules generate only correct facts. Completeness
(in the context of this invention) means that axioms and rules
are able to deduce all possible facts explicitly. This is
accomplished using the following so-called naive-complete-
ness:

15

20

w

0

35

40

50

55

6

Alg.1 (naive ground-term completeness):

Input: A function-free, definite and finite
logic program (with DATALOG as a rule-definition
language).

Output: The full extension of all deducible formulas in D

(written ext(D)).
Step 1: M=All facts in D.
Step 2: Repeat
Step 2.1 Set Mold=M;
Step 2.2 For each rule QR Al | A2... | An ; Begin
Step 2.2.1 Calculate each assignment IT, so that
m(AL | A2... | An) is “True” in M;
Step 2.2.2. If TI(Q) | M, append it to M.
End
until (M=Mold)

Two important drawbacks of this algorithm are the uncon-
trolled repetition of deduction-steps and the generation of
the extensions of all the relations.

Def. 14: A premise Ai of a rule QI A1lA2 . . . |An is
called a pattern if there exists at least one fact and an
assignment IT so that F=II(Ai) (Aiis said to unify F).

Proposition 1: Supposing that each pattern of an average
rule QR AlIA2 . .. |An unifies m facts of ext(D) on
the average, then the complexity of Alg.1 is of order
O(m™).

Proof:

The calculation of all variable-assignments II in Step
2.2.1. needs an algorithm which builds the intersection-set
of the Ais (in AIA A2 . .. A An). The complexity of this
algorithm is ¢, *m”, where ¢, is a constant (c.f. Knuth, t/e art
of computer programming, Vol: Searching and Sorting, page
391).

Step 2.2.1. is not the only blocking step in Alg.1. The
search process in 2.2.2. is also very complex if no sorting
order is assumed. A new fact is only added to the iterative
process if the whole database was searched for. Supposing
there are k new facts and t exist in the database a priori, then
there are always k*t comparisons necessary to accomplish
this task.

Even worse is if k increases. Then this expression
becomes
t+[1/a | ¥k*t+[1/a, *k*t+ . . . +k*t where a0,al . . . etc. are
coefficients which depend on the logical form of the pro-
gram. This form determines which “portion” of k is gener-
ated in which step.

In spite of those problems Alg.1 remains a very safe way
to generate the minimal model of a DATALOG-program.
This, because of the following property:

Proposition 2: Alg.1 terminates always (if given a correct

input).

To prove this property some more definitions and a
proposition are needed.

Def. 15: The Herbrand universe of a logic program (U,)
is the set of all ground-terms which are constituted
using constants and function symbols in P.

Def. 16: The Herbrand base of a logic program B)) is the
set of all ground-atoms which are constructed using
predicates from P and ground-terms from U,

Def. 17. A Herbrand interpretation of a logic program is
any subset of B,

Def. 18: A Herbrand interpretation I is a Herbrand model
of a definite logic program iff all definite clauses in P
have the value “true” in that interpretation. A definite
clause has the value “true” in I iff at least one premise
is “false” or the conclusion is “true”. An atom A has the
value “true” in 1. iff A is contained in I—otherwise it is
“false”.

US 11,113,281 B2

7

The Herbrand universe of P, which has only a constant
{0} and the function {s}, is: {0,s(0),s(s(0)),s(s(s(0))) . . . }.
Supposing, that it contains the predicate ,,>,,, then we have
{>(5(0).0).>(5(5(0)).5(0).>((s(sO)).5G(0)) - - - }-

In the example U, and B, are infinite. If no function
symbols are permitted, then U, and B, are both finite.

Proposition 3: The Herbrand base of a definite, function
free and finite program P is finite.

Proof:

From the finiteness of P and the fact, that it is function free
follows that the Herbrand universe is also finite. Since there
are only finitely many predicates, B, must be finite.

Proof of Proposition 2:

Suppose that Alg.1 doesn’t terminate. There exist chains
of ground-terms which either contain infinitely many new
terms or repeatedly the same. Since B, and U,, are finite, the
first possibility is discarded. But Step 2.2.2. prevents the
second possibility from occurring, i.e., Alg.1 terminates
always.

Alternative Methods of Ground-Term Completeness

In (Bancilhon, F.; Maier, D.; Sagiv, Y.; Ullman, J. D.:
Magic sets and other strange ways to implement logic
programs, Proc. ACM SIGMOD-SIGACT Symp. of prin-
ciples of database systems, Cambridge (Mass.), 1986),
(Bayer, R.: Query Evaluation and Recursion in Deductive
Database Systems, Manuscript, March 1985) or (Lozinskii:
Evaluation queries in deductive databases by generating,
Proc. Int. Joint Conference on A.I, 1985) several alterna-
tives to this naive completeness are shown to exist. They
either concern the inference process itself, i.e., the way in
which the rules are to be applied or the calculation of the
relevant facts. A method which is suggested to enhance the
inference is the semi-naive ground completeness method. It
tries to suppress undesired repetitions of fact generations
(Step 2.2.1 in Alg.1) by only taking the incrementally
generated facts into account (compare Bancilhon, F.;
Ramakrishnan, R.: An amateur’s introduction to recursive
query processing, Proc. of the ACM SIGMOD-SIGACT
Conference, Washington D.C., May 1986 and Chang, C. L.;
Gallaire, H.; Minker, I.; Nicholas, M.: On the evaluation of
Queries containing derived relations in relational databases,
Advances in database theory, Vol. 1, 1981, or Marg-Puchen;
Gallausiaux, M.; Jomien: Interfacing Prolog and Relational
Database Management Systems, New applications of data-
bases, Gardavin and Gelaube eds. Academic Press, London,
1984).

The hypothesis is, that AR =R,[F(R,,[AR,))-R, for
each relation R; (AR, is the incremental change of R, and
F(R,) the functional form, deduced from the body of a rule).
Generally AR, cannot only be calculated in terms of AR, ;.
In case of linear recursion, however, this is possible, because

FR;.; [AR;)=FR;.)[F(AR,)=RIIF(AR,).

Thus, the semi-naive method is only valid as long as the
programs are linearly recursive. In this case, they provide a
good alternative for Alg.1. It is interesting to note that the
complexity of the intersection A;IA,l . . . ISl ... A, is
reduced by reducing the number of facts which unify (in
average) with S. All other intersections must still be per-
formed. But this was the most important drawback of Alg.
1 (Proposition 1).

The so-called APEX-procedure is a method of the second
type, i.e., the facts relevant to a query q? are generated
before the actual completeness algorithm starts. Those facts
are calculated using so-called rule system-graphs which
contain all logical connectives between rules of the program.
They are coupled with a query generation process which

20

25

40

45

60

65

8

produces several new queries ql?, q2? . . . depending on
whether it encounters AND connectives or not. The genera-
tion is accomplished using side-way information passing
(SIP) between the query (or the queries) and the facts in the
AND-connectives. Another method of this class is QSQ (c.f.
Vieille, L.; Recursive axioms in deductive databases: The
Query-Subquery approach, Proc. First Int. Conf. on expert
database systems, Kerschlag ed., Charlston, 1986). There,
rules are used to generate queries. Relevant facts are
deduced using backward chaining in a way similar to
PROLOG. In case of recursive predicates, queries are pro-
duced using SIP with actually existing facts. The real
difference between APEX and QSQ on one side and semi-
naive completeness on the other is, as stated above, that the
semi-naive method addresses the problem of optimizing the
inference process itself whereas the other two methods try to
reduce the complexity by reducing the amount of relevant
facts.

Magic-sets (c.f. Been, C.; Ramakrishnan; On the power of
magic, Proc. sixth ACM SIGMOD-SIGACT Symp. on prin-
ciples of database systems, San Diego, Calif., March 1987)
is a modification of QSQ in which adornments (i.e., variable
assignments) are either added to the program in form of new
(magic) clauses or to the right side of a clause in form of
restrictions. Starting with the goal-clause, a new set of
predicates is generated. Using SIP, adornments are passed
successfully. The result is a new modified version of the
logic program which is then executed using naive- or
semi-naive completeness. In some cases magic-sets can
provide very fast alternatives as in the case of the following
program:

anc(X,Y) R par(X,Y).

anc(X,Y) N anc(X,Z)lpar(Z,Y).

and the query

q(X)<—anc(a, X).

The new magic program is:

magic (a).

qX)M anc(a, X).

anc(X,Y) R par(X,Y).

anc(X,Y) 0 magic(X)lanc(X,Z)Ipar(Z,Y).

magic(Z) R magic(X)lanc(X,Z).

The magic predicate contains a restriction to variable-
assignments and might be thought of as a strategy with
which constants are tied together.

Semantic Considerations Concerning the Meaning of a
Variable in the RDM

There exist many DATALOG-based methods for con-
straints-verification. The central problem is the reduction of
complexity within rule execution. Solutions try mainly to
generate instances of the rules first, before an adequate
constraints-application starts. The fact that many approaches
to solutions through variable instances achieve a high degree
of efficiency requires a discussion of the meaning of a
variable in the closed world of a deductive database and an
RD model. The meaning of a variable, which is common in
mathematical logic (and therefore in logical programming),
is to consider it as an entity independent of the domain of the
application. Thus, the link between a variable instance and
the domain is unclear, since there are no explicit or implicit
rules in the semantic interpretation of the formulas for the
description of these instantiation procedures. This link is
thus left to the implementation of a logical machine, which
can lead to considerable problems.

DE19725965C2 solves this problem by the introduction
of the Herbrand-abstraction structure. Here, variables are
considered as abstractions of terms and conceptual relation-
ships in the catalog level. This approach makes it possible to

US 11,113,281 B2

9

describe alternative completion methods that make it pos-
sible to get from a standard Herbrand-interpretation to a
“more complete” one by means of an arbitrary degree of
abstraction. Reversing the “abstraction process”, i.e., if one
starts with the un-instated clauses, the Herbrand-abstraction
structure allows procedures to divide the clauses of a logical
program into a set of “more instantiated” clauses. This in
turn leads to the efficiency enhancement (linearization)
described there. However, the method formalized in Alg. 2
in DE19725965C2 does not provide a concrete method for
optimizing the instantiation of the rules. This could be
achieved in a Herbrand-abstraction structure using various
ways. Furthermore, the main weakness in the use of the
Herbrand-abstraction structure is that it represents an expo-
nential search space in the worst case.

Solution to Problem

The method presented here leads to complete evaluation
methods using a new representation of variables as
abstracted from the classical truth table, also called pattern
character strings or pattern-trees. In contrast to the prior
state-of-the-art resolving methods, these lead to small search
spaces in which linear processing times of inputs are real-
ized. The term “inputs” in this case always means instan-
tiations of logical formulas. To generate the extension, a
method is used that solves pattern-trees instead of clauses. In
this context, two types of resolutions of formulas/clauses
(also referred to as Solvers) are known: complete and
incomplete.

A solver is called complete when it can establish both, that
a formula is satisfiable and that it is unsatisfiable. Not all
formulas that can occur in a Solver formula fall into the
same category. In practice, there are generally three catego-
ries:

Random: Formulas generated randomly by a schema

called “fixed clause length model” (one only specifies
the number of variables and clauses, and how long a
clause should be, the rest is randomly generated)

Crafted: Formulas derived from difficult combinatorial
problems, such as graph coloring

Application: Formulas derived from applications in real-
ity (e.g., circuit verification)

Not all solver paradigms are just as good with all types of
formulas. There are four types of Solver which are shown
here. To ensure a clear overview of today’s methods, each
type is characterized by the following features:

Randomization, completeness, algorithm class, search
strategy, variable selection heuristics, value selection heu-
ristics
Terminologies:

Branch and Bound: Method of Operations Research (OR),
in which a combinatorial optimization problem (finite num-
ber of independent variables with a discrete set of values) is
not accessible to effective analytical treatment or to enu-
meration methods (decision tree methods) If the problem
can be formulated using n discrete variables which can
assume k possible values, then it is a qualitative decision-
making problem.

Approach: The solution method uses the principle of
partitioning and limiting the solution space in order to
dispense with a complete enumeration.

Steps:

a) Branch: One of the variables is assigned a certain
permissible value, resulting in a new sub-problem, the
size of which is one variable less. Fork possible values
for the selected variable, k-“simpler” sub-problems

—_

0

15

20

25

30

35

40

45

50

60

65

10

arise. It remains to be determined which of the sub-
problems contains the optimal solution.

b) Bound: After fixing a variable, it is determined how the
solution for the remaining variables can fail. If one has
determined the bounds for all possible values of a
selected variable, one selects the alternative with the
most favorable bound to go to the next branch. If a
permissible solution is reached after multiple branching
and bounding, all cases can be deleted with less favor-
able bounds. The optimum is achieved if a more
favorable permissible solution is no longer to be
expected.

¢) Unit-Propagation: The formula is searched for unit-
clauses. A unit-clause is a clause in which all variables
except one are already used and the clause is not yet
satisfied. Such a clause can only be satisfied if the last,
unassigned variable is occupied so that the clause
becomes true.

The four Solver types are now classified as follows:

1. DPLL/Look-Ahead

Named after Davis, Putnam, Logeman, Loveland (c.f. M.
Davis, G. Logemann, and D. Loveland, A Machine Program
for Theorem Proving CACM, 5 (7): 394-397, 1962) DP
resolution), then DLL, also DPLL.

Randomized: No

Complete: Yes

Algorithms class: Branch-and-Bound (chronological Back-
tracking)

Search strategy: Systematic, binary search tree

Variable selection Heuristics: VAR, selects a variable to be
used next (decision).

Value-selection Heuristics:

VAL, selects the value to be assigned to this variable first
(direction).

Variable assignment+unit propagation (=Branch).

Conlflict (as one of the clauses becomes empty) (=Bound):
Undo assignments. Decision variable in other direction,
if possible, otherwise backtracking.

If backtracking is required for the very first variable:
Formula can be satisfied.

The quality of a branch-and-bound method depends
essentially on the selection of the bounds. This selection can
only be done heuristically; it is therefore not possible to
make statements about the convergence of the algorithm.
The main disadvantage of DPLL is, however, the potentially
exponentially large search tree and the fact that it only works
well with special types of formulas (c.f. Table 1 further
down).

2. SLS

Named after: Stochastic Local Search (short SLS, c.f.,
e.g.: Balint, A., Frohlich, A.: Improving stochastic local
search for SAT with a new probability distribution. In:
SAT-2010. LNCS, Vol. 6175, pp. 10-15 (2010))
Randomized: Yes
Complete: No
Algorithms class: Las Vegas Algorithm (Randomized algo-

rithm, which always produces one correct result when it

terminates)
Search strategy: Randomized, optimization of a target func-
tion (objective function)

a. Choose randomly an assignment o

b. Verify if a(F)=1. If yes: End.

c. In case no: U={clceF: a(c)=0}. Chose ueU randomly

d. In u, chose one of the literals, respectively, i.e., the
associated variable (PICKVAR) via ‘objective Func-
tion’

e. Invert the assignment (FLIPVAR) and go to b.

US 11,113,281 B2

11

The variable selection heuristic PICKVAR selects a vari-
able by means of an ‘objective function’, which is to be
optimized.

Variant 1: Minimize the number of unfulfilled clauses
(consider all variables in u and flip the assignment
where |U| is minimal after the flip)

Variant 2: Minimize the number of clauses unsatisfied by
the flip.

Disadvantageous is that if Variants 1 and 2 get into a local
minimum they become very inefficient. The only solution to
this is randomization (random flips). Also, it cannot be
determined whether assignments were previously queried
already. The biggest deficit of SLS lies in the incompleteness
of the method.

3. MP

Named after: Message Passing, Approach motivated by
statistical physics (Ising Model, c.f. W. Gropp, E. L. Lusk,
N. Doss, and A. Skjellum. A High-Performance, Portable
Implementation of the MPI Message Passing Interface Stan-
dard. Parallel Computing, 22(6):789-828, 1996.)
Randomized: Yes
Complete: No
Algorithms class: Message passing
Search strategy: Randomized, clauses and variables negoti-

ate the assignment (factor graph)

A clause queries variables for the probability of their

acceptance of a favorable assignment

The worse the overall situation for a clause becomes, the
more the clause requests the respective variables to
change their values

Claims (clauses of variables) and consent (variables to
clauses) are interpreted as messages

Clauses only talk with the variables whose literals they
contain. Variables talk with all clauses in which they
occur (bipartite graph with two edge types: factor
graph)

When all agree (no changes in the news): allocate vari-
ables with the strongest bias

It is possible that MP converges, but all variables have a
bias near 0. In this case, for example, SLS assigns the
remaining variables randomly, so that a satisfiable assign-
ment is produced. Furthermore, MP may not converge, or
MP may converge, and non-trivial biases may arise, ending
in a conflict. MP works very well on satisfiable large
(variable number >100000) random formulas with ratio to
the 4. 2 (clauses/variable ratio).

Disadvantageous is that MP cannot determine whether a
formula is unsatisfiable or not (it is therefore incomplete).
4. CDCL

Named after: Conflict Driven Clause Learning, (c.f. E.
Goldberg and Y. Novikov. BerkMin: a fast and robust
SATsolver. In Design, Automation and Testing in Europe
Conference, pages 142-149, March 2002)

Randomized: No

Complete: Yes

Algorithms class: Backtracking (not-chronological, =Back-
Jjumping)

Search strategy: systematic, clause learning to improve Unit
Propagation (UP)

VAR and VAL (same as DPLL).

Variable assignment and check whether UP ends in a

conflict (c.f. DPLL).

Construction of a search tree, however, not using recur-
sion.

Decisions are counted and stored as well as all assign-
ments deduced using UP.

12

If the algorithm is in conflict, it analyzes it by means of
a conflict graph (FirstUIP).

This creates a new clause which is inserted into the
formula.

5 After that, backjumping takes place, in such a way that the

new clause is a unit-clause.

Disadvantageous is, as already mentioned for DPLL:
Potentially exponentially large search tree, performance
increase only with special formula types (c.f. Table 1
below).

All four Solver methods can be characterized by the
following features and are therefore significantly different
from the method according to the invention presented
below:

1. They are an example of the application of Tarski’s
semantic truth concept to formulas of mathematical
logic. In principle, this understanding prescribes that
variables exist separately from their meanings or val-

20 ues. These meanings are substituted in the formulas, so

that these are satisfied. Thus, variables (and their cor-
responding literals) are considered containers, which
do not allow structural information to be derived from
the data stored in them.

25 2. The byproduct of this view is that algorithmic methods
must necessarily test different variable assignments
before they find a valid one. The concept of a variable
evaluation is therefore an integral part of those meth-
ods.

. Information from the concrete mathematical-logical
formula concerning the alignment of used variables
(literals) and their reciprocal interactions is not applied
or only inadequately applied (usually in the form of
heuristics) in order to find a valid assignment.

4. All methods avoid the construction of the entire com-
binatorial space because this construction is exponen-
tial in terms of the number of variables. Since the
methods use variable assignments iteratively, only a

40 part of the space is constructed in each iteration, the

formula is evaluated thereon, then the next iteration is
started, and so on.

5. The fact that the methods do usually not use generic
heuristics, their performance is strongly dependent on

45 the type of the formula (Table 1). “Good”, “bad” and

“neutral” are rough indicators of the expected perfor-
mance of a method based on a given type of formula.
“SAT/UNSAT” stands for “satisfying” or “un-satisfy-

30 3

35

ing”:
50
TABLE 1
Look- Message-
Category CDCL ahead Passing SLS
55 Random SAT bad neutral good good
Random UNSAT bad good bad bad
Crafted SAT good neutral bad neutral
Crafted UNSAT neutral neutral bad bad
Application SAT good bad bad bad
Application UNSAT neutral bad bad bad
60

Finally, a solver method is known that corresponds to the
classical truth table method. It differs from the above-
described methods in points 4 and 5 as follows:

65 1. An integral part of the method is the construction of the
entire exponential space of all combinations of variable
values. After this space has been constructed, one can

US 11,113,281 B2

13

efficiently determine whether or not a particular vari-
able assignment for the respective formula results in
‘true’.

2. This efficient determination, unlike all other methods,
does not use the replacement in the original formula,
but the simple search in the generated space, i.e., in the
truth table. This makes it possible to find the truth-value
of the instantiated formula without using the classical
logical operators (AND, OR, NOT), since the full
extension of these operators, applied to the logical
values ‘true’ and ‘false’, is already materialized.

3. In the worst case, the number of variable assignments
that must be passed through until a valid value is found
is exponential. This potential exponentially is the great-
est disadvantage.

4. The performance is independent of the formula type.

Goal of the Invention

The objective of the invention is to optimize logical
interrogation methods of relational database systems in their
most general and complete form, while maintaining strict
logic conditions such that the response procedure experi-
ences linear efficiency in terms of speed and memory
requirements.

Nature of the Invention

The invention is based on the objective of creating a
method of the type mentioned above which optimizes rela-
tional database systems in their most general and complete
form in their query procedures in such a way that the
response procedure undergoes an efliciency increase in
terms of speed and memory requirements without giving up
any logical condition. This object is achieved by methods
described in the Patent Claims 1-13.

Example of Accomplishment

Extending the RDM with the Concept of a Logically Com-
plete Terminology System

The process underlying the current invention is based
upon the idea of constructing a RD-meta-level containing all
terminological, logical and application-relevant data in their
most complete extension. In this way a very general form of
constraints handling is reached, because the constraints can
then be expressed in a pure logical (declarative) form. The
following example illustrates this procedure: Suppose we
have a printing-machines database. This database will con-
tain the tables “machines” and “company” (as in FIG. 3).
The table “machines” contains—among others—the field
“machine-type” and “printing-group”. Those are of special
importance, because their combinations model known con-
straints in the printing-machine industry. E.g., no “polar”
machine can be 5-colors, since Polar produces only cutting
machines and their accessories. Similarly, a “Heidelberg-
Tiegel” never exceeds two colors, so that the tuple
<type="tiegel”, group="3-colors”> is inadequate. If one
tries to express those constraints in general DATALOG rules
(as is the case in most approaches) one faces the problem of
having to define the rules in the facts-nearest way, because
they barley have general validity. The combination
<type="tiegel”, group="3-colors”™> 1is as absurd as
<type="tiegel”, group="5-colors”> and only
<type="tiegel”, group="2-colors”> is correct. Most logic-
based solutions lead to non-monotonic inference-mecha-
nisms and are thus both very complex to realize and prin-

20

25

40

45

60

65

14

cipally incomplete. The method in patent DE19725965C2 is
based upon generating all legal combinations of facts a
priori and storing them in the catalogue. When this is done
two goals are attained:

1. Strict terminological control, i.e., no field-values are
allowed other than those known to the system

2. The ground-terms relate exactly to each other as
expressed by the relations which are listed in the
catalogue

In contrast to DE19725965C2, an efficient fact search
space is built up by introducing new resolution methods.
FIG. 4 shows the new method of an SQL clause processing:

The queries compiled in point (6) are verified in (7). If the
result of the search was positive, the command sequence
continues as usual. Otherwise, a system alert (8) will be
issued. In this case the term combination is invalid. For
example, in the above database, the query generator would
compile the fact “has_group (polar, 5-color)” when data
input (type="“polar” and group="5 colors”). This proves to
be non-existent and switches on the warning process in (8).

The following steps illustrate aspects of the invention
with reference to the FIGS. 5A and 5B.

Step 1: The database query is translated into clauses. This is
done using known methods.

Step 2: Used literals are converted into pattern trees (pattern
strings) each representing the multiple (called harmony) of
a fundamental frequency of ones and zeros (“true” and
“false”). These sample trees have a constant length inde-
pendent of the number of variables.

Step 3: The pattern trees of different literals of a clause are
joined by means of a special type of OR operation (called
PatternOr) into a single binary tree, each corresponding to
the clause.

Step 4: Pattern trees representing clauses are resolved by
means of a special type of AND operation (called Patter-
nAND). This new resolution method generates a binary tree
(called a result tree, c.f. FIG. 5B), which can be transformed
into a compiled decision tree for the logical theory. The most
important feature of this latter tree is the fact that it com-
pletely replaces the truth table of the given clause set, i.e., a
clause set is true exactly iff the value “true” can be inferred
from this tree. The tree is used to find the entire truth-value
of all clauses.

Step 5: Next, the tree processes the query (translated in
instantiated formulas of the logic) such that only linear tree
search procedures are necessary to find the truth-value. This
factual value again represents—in the translation used—its
output.

Determining the Truth-Value of a Query by Means of a
Method for Processing Logical Pattern Trees

Method 1:

The central method of this invention determines the
truth-value of a formula by means of the steps outlined
below (Patent Claim 1). The clause set represents any
database query.

Step 1—Convert the query to clauses: In this step, known
methods are used to get the logical representation of the
query.

Step 2—Convert all literals to pattern strings: Suppose the
following clause set corresponds to a query: C={{x0,x2},
{nx0, nx1} {x1,x2} } with N=3 (number of variables) and
M=3 (number of clauses), then, as is known, the classical
truth table is given in Table 2:

US 11,113,281 B2

15
TABLE 2
X0 X1 X2 C1 c2 c3
0 0 0 0 1 0
0 0 1 1 1 1
0 1 0 0 1 1
0 1 1 1 1 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 1

The following method generates a list (called a pattern
allocation list) that assigns a unique pattern string to each
literal and its negation (c.f. FIG. 6).

The list is an array of all possible literals of the N
variables (i.e., 2*N long) and each literal is assigned a string
representing harmonies of ones and zeros. These harmonies
are given by the equations described in the method. The
literal nx0, for example, receives the pattern string: 2(1)2(0).
In a pattern string, the factor 271 is the pattern multiplication
factor.

Method 2:

Construction method of a pattern assignment list for any
N (Patent Claims 2-7):

Step 1: Start with an empty list

Step 2: for i=0 to N-1
a) Add a —ves literal, call it nX<i>
b) Assign to it the pattern string 2"i(2"[N-i-1](1) 20[N-

1-](0))

¢) Add a+ves literal, call it X<i>

d) Assign to it the pattern string 2"i(2"[N-i-1](0) 2"[N-

1-i1(1))

Step 3—Execution of PatternOr-Operation: The pattern allo-

cation list obtained by Method 2 is used to create pattern

trees of clauses. For the creation of a logical pattern tree
from a pattern assignment list, a logical operator (here called

PatternOr) is necessary, which, unlike the classical OR,

takes the pattern/sub-pattern multiplication factors and per-

forms the same operations between sub-character strings
having multiplication factors only once. If PatternOr is
applied, e.g., between x0=4(0)4(1) and x2=4(1(0)1(1)), one

has only to perform the following operations (c.f. FIG. 7):

a) The substring 4(1) is completely copied. It represents the
right part of the result.

b) The substring 4 (0) is further processed recursively with
half of 4(1(0)1(1)), i.e., the operation of PatternOr(4(0),
2(1(0)1(1))) is performed.

¢) The expression in (b) may be reduced as follows:
PatternOr(4(0), 2(1(0)1(1)))=2*PatternOr(2(0),(1(0)1

(1))) which means: The PatternOr

operator is applied to a half-long string, and then multi-

plied by a factor of 2, (i.e., the string

is concatenated with itself once) to achieve the same

result as intended in b.

d) The string 1(1) is completely copied and represents the
right part of the sub-chain.

e) PatternOr(1(0),1(0)) yields 1(0).

The steps required for PatternOr to generate a pattern
string for C1 are: 2 copy steps (copying 4(1) and 1(1)), 2
divisions (called splits), where the string is divided in half,
and finally two divisions/multiplication steps. It is clear that
the above procedure is no longer dependent on N (or M),
since it makes use of the harmonic representation of the
patterns, regardless of their length.

20

25

30

35

40

45

50

55

60

65

16

Method 3:

Creating a logical pattern tree for clauses (Patent Claim

8):

)It is assumed,

1. that the query has already been translated into clauses
K<a>, O0<=a<=M,

2. that pattern string of all literals of clause K<a> (of the
form K<a>={Xi, Xj, Xk} or K<a>={nXi, nXj, nXk})
has already been determined by means of the above
method 2,

3. that the method adopts any such pattern string Z1 and
Z2 upon input,

4. depending on how many literals exist in the clause (1,
2 or 3), the method is not used at all, or once or twice,
and

5. that the method provides a pattern tree representing the
result of the logical OR operation between the input
pattern character strings of a single clause.

6. Use the string Z1 and Z2 in the following way:

Step 1: If both strings contain multiplication factors,
then divide the largest factor by the smallest (let f be
the smallest) and set PatternOr(z1,2z2)=f*PatternOr
(Z1/1,72/1), i.e., repeat Step 1 recursively with the
reduced chains, where Z1/f is a string containing a
multiplication factor divided by f. This is similar to
Z2/1.

Step 2: If only one string (Z2, for example) contains a
multiplication factor, split the other (Z1) into two
halves (split operation). Set PatternOr(Z1,72)=Pat-
ternOr (Z1left,72/2) & PatternOr(Z1right, 72/2). In
other words: Repeat Step 1 recursively twice, using
the left side for the first time and the right side of Z1
the second time. Link the result of the two recur-
sions.

Step 3: If neither of the two string contains a factor, set
Pattern (Z1,72)=PatternOr (Z1left,Z2left) & Patter-
nOr (Z1fight,7Z2right). Expressed differently: Repeat
recursively Step 1 first with the two left sides then
with the two right sides of Z1 and Z2. Link the result
as above.

Step 4: If Z1=2"x(0), the method is to output Z2 and
terminate. If Z2=2"x(0), then the method is to output
Z1 and terminate.

Step 5: If Z1=2"x(1), then the method is to output Z1
and terminate. If Z2=2"x(1), the method is to output
72 and terminate.

Method 3 was applied to two literals in FIG. 8, since

sample clause C1 had only two. Assume, e.g., that

C1'={nx0,nx1,nx3}, then FIGS. 9A to 9C show the process

of pattern tree generation for C1' according to Method 3.
Method 3 is for the purpose of generating logical pattern

trees, which are the clauses. From this point of view, the

maximum number of steps of this method, which is neces-
sary to construct the pattern tree of a single clause, is always
constant since it is independent of the number of variables

N and the clauses M.

Logic pattern trees obtained by Method 3 (PatternOr)

have the following characteristics (c.f. FIGS. 9A to 9D):

1. They contain maximum k (in the Figure k=3) inter-
leaved repeating character strings (called pattern sym-
bols or symbols) which are provided with a repetition
factor (multiplication factor). The root symbol
[C<i>s3] in the Figure (called the basic symbol) rep-
resents the largest repeating string. Its substrings,
which also repeat with a factor and are not leaves
(called nodes or sub-symbols), are called [C<i>s2] and
[C<i>s1] depending on their size. The number of
unique, repeating, nested pattern symbols of a tree is

US 11,113,281 B2

17

called a repeat depth. The repetition depth of the
sample trees obtained by process 3 is maximally k.

2. Leaves are harmonic repeats of ones or zeros.

3. Pattern symbols contain only the name of a single
clause, <Ci>, since they are not links between clauses.
This property is called the cardinality of the pattern
symbols. The cardinality of the pattern symbols
obtained by Method 3 is 1.

4. The branch depth (or simply “depth”) of a logical
pattern tree is the maximum number of branches—up
to the leaves. A tree obtained by Method 3 therefore has
a maximum constant depth of k which is independent
of N or M. It is equivalent to the maximum repeat
depth.

The next step is to show according to this invention how
the pattern trees are used in order to realize the logical AND
between the clauses. Similar to PatternOr, the following
Method 4 (PatternAnd or Resolve) shows how this can be
done. FIGS. 10A to 10B and 10C to 10D show the most
important case differences of this method.

Method 4:

Creating a logical pattern tree for all the clauses of a
logical formula (PatternAND or Resolve) (Patent Claim 9).

It is assumed,

1. that the query has already been translated into clauses
K<a>, O0<=a<=M,

2. that logical tree trees representing each clause K<a> of
the formula are already present by means of Method 3,

3. Method 4 is defined for arbitrary pattern trees Z1 and
72 and not only for those which correspond to the
individual clauses,

4. that the method is used M-1 times to achieve the final
result. In each step i, the pattern tree (intermediate
result number i-1) obtained up to then is resolved with
the next clause Ci+1, and

5. that the method provides a pattern tree, which is the
result of the logical AND operation between all clauses.

Use the string Z1 and Z2 as follows:

Step 1: If both strings contain multiplication factors, then
divide the largest factor by the smallest (let f be the smallest)
and set

PatternAnd(z1,72)=1*PatternAnd(Z1/,22/f), i.e., repeat
recursively Step 1 with the reduced chains, where Z1/fis a
string containing a multiplication factor divided by f. This is
similar to Z2/f.

Step 2: If only one string (Z2, for example) contains a
multiplication factor, then split the other (Z1) into two parts
(split operation, c.f. FIGS. 10B and 10D, case 1 and 3). Set
PatternAnd(Z1,72)=PatternAnd(Z1left,Z2/2)&Pattern And
(Z1right,72/2). In other words, repeat Step 1 recursively
twice, using the left and the right side of Z1 for the first time.
Concatenate the result of the two recursions.

Step 3: If neither of the two strings contain a factor (c.f. FIG.
10C, case 2), then set PatternAnd(Z1,72)=PatternAnd
(Z11eft,Z2left)&PatternAnd(Z1right,Z2right). In other
words, recursively repeat Step 1 first with both left sides
then with both right sides of Z1 and 7Z2. Link the result as
above.

Step 4: If Z1=2"x(0), the method is to output Z1 and
terminate. If Z2=2"x(0), the method is to output Z2 and
terminate.

Step 5: If Z1=2"x(1), the method is to output Z2 and
terminate. If Z2=2"x(1) the method is to output Z1 and
terminate.

FIGS. 12A and 12B show the result of PatternAnd applied
to clause set C (also called the resolution result).

20

25

40

45

60

65

18

The essential practical difference between Method 3 and
Method 4 (except that both logically perform different
operations) is that input pattern trees that have constant
depths in the case of Method 3 could have linear depths (in
M) for Method 4. The most common case of a logic input
tree for Method 4 is shown in FIG. 11A.

FIG. 11B illustrates the theoretical expansion of this tree,
which can allow up to M"M (i.e., factorial many) symbols.
Practically, it can be shown that the number of unique
pattern trees generated by this method can remain polyno-
mial in the number of literals of the query if literals are
substituted appropriately.

This tree (called a general link tree, resolution result) has
the following properties:

a) All pattern symbols (including the basic symbol) are
composed of symbols of several clauses, as opposed to
clause pattern trees, because the tree corresponds to the
logical links of these clauses. Their cardinality is there-
fore generally >1.

b) The depth of a general link tree is linear in M.

¢) The cardinality of the basic symbol and all sub-symbols
is maximally M.

d) Leaves of the tree are independent pattern trees which
have the same structure as that of the general link tree
but have a maximal cardinality of M-1 (i.e., represent
results of maximum M-1 clause linkages).

e) Symbols of the tree (seen as sets of sub-symbols and
leaves) are organized by means of an upward-bounded
semi-order (related to their length). The upper bound is
the M” base symbol, the lower bounds are the symbols
with the cardinality 1.

Method 5: Creating a Decision Tree for a Clause Set (Patent
Claim 10):

On closer examination of Method 4, it turns out that it
permits a canonical division of the clause sets—as a by-
product (c.f. FIGS. 12A and 12B). This division is the result
of the execution of successive resolutions and is used to
construct the logical decision tree. Moreover, it is possible
to use lengths of the literals to provide appropriate ordering
criteria for the efficient production of this tree which is made
possible by renaming variables. FIGS. 12C and 12D show
the transition from the result tree to the decision tree by
means of an example given. To ensure this transition, the
following procedure is necessary: It is assumed,

1. that the query has already been translated into clauses

K<a>, O0<=a<=M,

2. that a resolution result for the clause set already exists,

3. that Method 5 recursively processes a pattern tree as
input, and

4. that this pattern tree is initially equated with the
resolution result.

Construct the decision tree as follows:

Step 1: Create a node (=K) in the decision tree. Create two
nodes as left and right nodes for K (LK, RK).

Step 2: Consider the clause set of the top symbol in the
pattern tree (=set) and compare them with the clause sets of
the left (=L.Set) and the right sub symbol (=RSet) in the same
tree if the cardinality of these symbols is >=1. In the latter
case, determine the variable which has disappeared from the
lower clause sets. Insert this variable as the name of K.
Step 3: If left or right sub-symbols of the top symbol in the
pattern tree have a cardinality <1 and the form 2"i(0), the left
or right node (LK or RK) is ‘false’. If, on the other hand,
they have the form 27i(1), then the same is ‘true’.

Step 4: Determine the partial variable assignment, which
makes the lower left set (LSet) and write it on an arrow,
which goes out of the new node K left to LK

US 11,113,281 B2

19

Step 5: Repeat Step 4 for the lower right set (RSet).

Step 6: Set Pattern Tree=left lower tree of the current pattern
tree, if LK is not ‘false’ or ‘true’ and call yourself recur-
sively, otherwise stop.

Step 7: Set pattern tree=right lower tree of the new pattern
tree, if RK is not ‘false’ or ‘true’, and call you recursively,
otherwise stop.

Step 8: Insert the result of the left and the right recursive call,
if they occur as left or right sub-nodes of the node K (at the
position of LK and/or RK).

With regard to Step 4: If, e.g., the upper clause set was
{X0,X2}{nX0,nX1}{X1,X2} and the lower was {X2}{X1,
X2}, then write X0=0 on the left arrow which comes out of
the node X0 (c.f. FIGS. 12C and 12D). Note that this
assignment always contains only one variable, namely the
one that was used as the name of the upper node.

Method 6: Finding the Entire Truth-Value of a Clause Set
(Patent Claim 11):

The decision tree is used to find the entire truth-value of
the clauses.

It is assumed,

1. that the query has already been translated into clauses

K<a>, 0<=a<=M,

2. that a decision tree for the clause set already exists.

Find the truth-value as follows (navigation in the binary
tree):

Step 1: Set the pointer to the base node in the tree.

Step 2: If this node is a leaf, terminate with the output ‘true’
or ‘false’ depending on whether the value of the leaf is ‘true’
or ‘false’.

Step 3: If the node is not a leaf, call yourself recursively, first
with the left, then with the right node.

Step 4: If the left or right recursive call returns the value
‘true’, then terminate the base call with the value ‘true’,
otherwise terminate with the value “false’.

Method 7: Use the Decision Tree to Process the Query
(Patent Claims 12 and 13):

The last step is to use the generated decision tree. The
following Method 7 describes the detailed procedure. FIGS.
12C to 12E illustrate, by means of the indicated decision tree
and associated truth table, how the Method 7 described
below is applied to concrete inputs.

It is assumed,

1. that a decision tree B has already been generated for the

clause set,

2. that the query exists in the form of instantiated clauses
K'<a>, where K'<a> is obtained from K<a>, by replac-
ing all literals with values from the set {true, false}.

For the given input of the Turing machine find the
truth-value as follows (navigation in the binary tree):

Step 1: Set the pointer to the base node in tree B.

Step 2: Read the name of the variable that was stored in the
node.

Step 3: Determine the value of the variable in the input to be
processed.

Step 4: If this value is ‘true’, use the arrow labeled
<VariableName>=‘true’ to go to the next node K.

Step 5: If this value is ‘false’, use the arrow labeled
<VariableName>=‘False’ to go to the next node K.

Step 6: When a leaf is reached in the tree, give the value of
the leaf. This is the value that corresponds to the output of
the Turing machine (relative to the given input).

Step 7: Else, set B=tree from B starting at node K.

Step 8: Call yourselves recursively.

DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

20

25

30

35

40

50

W

5

60

65

20

FIG. 1 shows the components of a real Relational Data-
base Model (RDM) system where Tj (j=1 . . . n) stands for
table names and arrows symbolize data transfer;

FIG. 2 shows the SQL-command flow;

FIG. 3 shows typical database tables (ER-diagram);

FIG. 4 shows the new method of an SQL clause process-
mg;

FIGS. 5A-5B provide an overview and illustrate overall
aspects of the invention;

FIG. 6 shows a logic pattern tree in construction for C1;

FIG. 7 illustrates a pattern tree for n=3;

FIG. 8 illustrates a pattern tree for n=4;

FIGS. 9A-9D illustrate the generation of the full logic
pattern tree for Cl;

FIGS. 10A-10B show the most important case differences
of creating a logic pattern tree for all the clauses of a logic
formula;

FIGS. 10C-10D show another two case differences of
creating a logic pattern tree for all the clauses of a logic
formula;

FIG. 11A shows the most common case of a logic input
tree for Method 4,

FIG. 11B illustrates the theoretical expansion of the tree
in FIG. 11A;

FIGS. 12A-12B illustrate the creation of decision trees for
a clause set with canonical divisions;

FIGS. 12C-12D show the transition from the result- to the
decision tree;

FIG. 12E provides the corresponding truth table of the
result- and decision tree;

The invention claimed is:

1. A method of applying a database query to a relational
database, the database having one or more records, the
database query reciting a relationship between a database
record and a plurality of literals, the method including steps
of:

converting the database query to a plurality of clauses,

each of the plurality of clauses reciting one or more
literals of the plurality of literals;

converting the plurality of literals into a set of pattern

strings, wherein

the set of pattern strings includes at least one selected
pattern string for each literal;

for N literals, the at least one selected pattern string for
the k” literal X, O=k=N-1, includes:

a first pattern string including a factor (2%) copies of a
first pattern, wherein the first pattern includes a
factor (2V%!) copies of a “1” bit followed by a
factor (2¥%1) copies of a “0” bit; or

a second pattern string including a factor (2%) copies of
a second pattern, wherein the second pattern includes
a factor (2V51) copies of a “0” bit followed by a
factor (2¥"%1) copies of a “1” bit;

joining pattern strings for all literals of a particular clause

by a special type of OR operation (patternOR), to

represent the particular clause;

repeating the step of joining pattern strings for each of the

plurality of clauses to obtain a plurality of binary trees

corresponding to the plurality of clauses;

generating a result tree by joining the plurality of binary

trees by a special type of AND operation (patter-

nAND);

using the result tree to find a truth value of the plurality

of clauses of the database query;

selecting database records satisfying the truth value as a

response to the database query.

US 11,113,281 B2

21

2. A method as in claim 1, wherein

the patternOR operation of pattern strings Z1 and 72,
when Z1 includes a factor f of a first pattern and Z2
includes a factor g of a second pattern, includes:

when f=g and f >1, set the patternOR operation to a result
including factor (f) copies of a patternOR operation of

Z1/f and Z2/f;

when f=1 and g>1, set the patternOR operation to a result
including a concatenation of a patternOR operation of
left-half(Z1) and 72/2 and a patternOR operation of
right-half(Z1) and Z2/2;

when f=g=1, set the patternOR operation to a result
including a concatenation of a patternOR operation of
left-half(Z1) and left-half(Z2) and a patternOR opera-
tion of right-half(Z1) and right-half(Z2);

when Z1 includes all “0” bits, set the patternOR operation
to a result including 7.2;

when Z1 includes all “1” bits, set the patternOR operation
to a result including all “1” bits.

3. A method as in claim 1, wherein

the patternAND operation of pattern strings Z1 and 72,
when Z1 includes a factor f of a first pattern and Z2
includes a factor g of a second pattern, includes:

when f<g and f >1, set the patternAND operation to a
result including factor (f) copies of a patternAND
operation of Z1/f and Z2/f,

when f=1 and g >1, set the patternAND operation to a
result including a concatenation of a patternAND
operation of left-half(Z1) and Z2/2 and a patternAND
operation of right-half(Z1) and Z2/2;

when f=g=1, set the patternAND operation to a result
including a concatenation of a pattern AND operation of
left-half(Z1) and left-half(Z2) and a patternAND
operation of right-half(Z1) and right-half(7Z2);

when Z1 includes all “0” bits, set the patternAND opera-
tion to a result including Z1;

when Z1 includes all “1” bits, set the patternAND opera-
tion to a result including Z2.

4. A method as in claim 1, wherein

the method is performed in polynomial time with respect
to the number of literals.

5. A relational database system including:

a processor coupled to a non-transitory memory, the
non-transitory memory including a relational database
and the processor including instructions disposed to
perform one or more functions on database queries;

the relational database having one or more records and
disposed to receive one or more database queries to be
applied to the relational database, each particular data-
base query reciting a relationship between a database
record and a plurality of literals;

the functions including a query convertor disposed to
convert the database query to a plurality of clauses,
each of the plurality of clauses reciting one or more
literals of the plurality of literals;

the functions including a pattern string generator disposed
to determine a set of pattern strings, wherein
the set of pattern strings includes at least one selected

pattern string for each literal,

for N literals, the at least one selected pattern string for
the k” literal X, 0<k=N-1, includes:

a first pattern string including a factor (2) copies of a
first pattern, wherein the first pattern includes a
factor (2M5') copies of a “1” bit followed by a
factor (2M%1) copies of a “0” bit, or

a second pattern string including a factor (2¥) copies of
a second pattern, wherein the second pattern includes

—_

0

15

20

25

30

55

60

65

22

a factor () copies of a “0” bit followed by a
factor (2¥%1) copies of a “1” bit;

the functions including a special type of OR operation
(patternOR) disposed to join pattern strings for literals
of a particular clause to represent the particular clause
and repeating the joining pattern strings step for each of
the plurality of clauses to obtain a plurality of binary
trees corresponding to the plurality of clauses;

the functions including a special type of AND operation
(patternAND) disposed to join the plurality of binary
trees to generate a result tree;

the functions including instructions disposed to find a
truth value of the result tree and select database records
satisfying the truth value as a response to the database
query.

6. A system as in claim 5, wherein

the patternOR operation of pattern strings Z1 and 72,
when Z1 includes a factor f of a first pattern and Z2
includes a factor g of a second pattern, includes

when f=g and £ >1, set the patternOR operation to a result
including factor (f) copies of a patternOR operation of
Z1/f and Z2/1;

when =1 and g >1, set the patternOR operation to a result
including a concatenation of a patternOR operation of
left-half(Z1) and 7Z2/2 and a patternOR operation of
right-half(Z1) and 72/2;

when f=g=1, set the patternOR operation to a result
including a concatenation of a patternOR operation of
left-half(Z1) and left-half(Z2) and a patternOR opera-
tion of right-half(Z1) and right-half(72);

when Z1 includes all “0” bits, set the patternOR operation
to a result including Z2;

when Z1 includes all “1” bits, set the patternOR operation
to a result including all “1” bits.

7. A system as in claim 5, wherein

the patternAND operation of pattern strings Z1 and 72,
when 71 includes a factor f of a first pattern and 72
includes a factor g of a second pattern, includes

when f<g and f>1, set the patternAND operation to a
result including factor (f) copies of a patternAND
operation of Z1/f and Z2/f;

when f=1 and g >1, set the patternAND operation to a
result including a concatenation of a patternAND com-
bination of left-half(Z1) and Z2/2 and a patternAND
operation of right-half(Z1) and 72/2;

when f=g=1, set the patternAND operation to a result
including a concatenation of a pattern AND operation of
left-half(Z1) and left-half(Z2) and a patternAND
operation of right-half(Z1) and right-half(Z2);

when Z1 includes all “0” bits, set the patternAND opera-
tion to a result including Z1;

when Z1 includes all “1” bits, set the patternAND opera-
tion to a result including Z2.

8. A system as in claim 5, wherein

the system performs its operation in polynomial time with
respect to the number of literals.

9. A method of applying a database query to a relational

-K-1
2NK

database, the database having one or more records, the
database query reciting a relationship between a database
record and a plurality of literals, the method including steps
of:

converting the database query to a plurality of clauses,
each of the plurality of clauses reciting one or more
literals of the plurality of literals;

converting the plurality of literals into a set of pattern
strings, wherein

US 11,113,281 B2

23

the set of pattern strings includes at least one selected
pattern string for each literal;

for N literals, the at least one selected pattern string for
the k” literal X,, 0<k=N-1, includes:

a first pattern string including a factor (2%) copies of a
first pattern, wherein the first pattern includes a
factor (25!} copies of a “1” bit followed by a
factor (2M%1) copies of a “0” bit; or

a second pattern string including a factor (2%) copies of
a second pattern, wherein the second pattern includes
a factor (2¥%) copies of a “0” bit followed by a
factor (251 copies of a “1” bit;

joining pattern strings for all literals of a particular clause

by a special type of OR operation (patternOR), to

represent the particular clause;

repeating the step of joining pattern strings for each of the

plurality of clauses to obtain a plurality of binary trees

corresponding to the plurality of clauses;

generating a result tree by joining the plurality of binary

trees by a special type of AND operation (patter-

nAND);

using the result tree to find a truth value of the plurality

of clauses of the database query, wherein using the

result tree to find a truth value includes converting the
result tree into a decision tree;

selecting database records satisfying the truth value as a

response to the database query.

10. A method as in claim 9, wherein

when a selected node in the decision tree represents a

patternOR operation on a first literal and a second

literal, performing the patternOR operation on a first
pattern string and a second pattern string representing
the first literal and the second literal respectively;

when the selected node in the decision tree represents a

patternAND operation on the first literal and the second

literal, performing the patternAND operation on the
first pattern string and the second pattern string.

11. A method as in claim 9, wherein the patternOR
operation of pattern strings Z1 and Z2, when Z1 includes a
factor f of a first pattern and Z2 includes a factor g of a
second pattern, includes

20

25

24

when f=g and f>1, set the patternOR operation to a result
including factor (f) copies of a patternOR operation of
Z1/f and Z2/1;

when f=1 and g>1, set the patternOR operation to a result
including a concatenation of a patternOR operation of
left-half(Z1) and 7Z2/2 and a patternOR operation of
right-half(Z1) and 72/2;

when f=g=1, set the patternOR operation to a result
including a concatenation of a patternOR operation of
left-half(Z1) and left-half(Z2) and a patternOR opera-
tion of right-half(Z1) and right-half(72);

when 71 includes all “0” bits, set the patternOR operation
to a result including 72;

when Z1 includes all “1” bits, set the patternOR operation
to a result including all “1” bits.

12. A method as in claim 9, wherein the patternAND

operation of pattern strings Z1 and 72, when 71 includes a
factor f of a first pattern and Z2 includes a factor g of a
second pattern, includes:

when f=g and f >1, set the patternAND operation to a
result including factor (f) copies of the patternAND
operation of Z1/f and Z2/f;

when f=1 and g >1, set the patternAND operation to a
result including a concatenation of a patternAND
operation of left-half(Z1) and Z2/2 and a patternAND
operation of right-half(Z1) and Z2/2;

when f=g=1, set the patternAND operation to a result
including a concatenation of a pattern AND operation of
left-half(Z1) and left-half(Z2) and a patternAND
operation of right-half(Z1) and right-half(Z2);

when Z1 includes all “0” bits, set the patternAND opera-
tion to a result including Z1;

when Z1 includes all “1” bits, set the patternAND opera-
tion to a result including Z2.

13. A method as in claim 9, wherein

the method is performed in polynomial time with respect
to the number of literals.

* * * * *

